結果
| 問題 |
No.213 素数サイコロと合成数サイコロ (3-Easy)
|
| コンテスト | |
| ユーザー |
miscalc
|
| 提出日時 | 2025-07-02 02:27:40 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 48 ms / 3,000 ms |
| コード長 | 49,611 bytes |
| コンパイル時間 | 5,660 ms |
| コンパイル使用メモリ | 338,608 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-07-02 02:27:48 |
| 合計ジャッジ時間 | 6,487 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 2 |
ソースコード
#define INF 4'000'000'000'000'000'037LL
#include <bits/stdc++.h>
using namespace std;
namespace {
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
using pll = pair<ll, ll>;
#define vc vector
template <class T>
using vvc = vc<vc<T>>;
using vl = vc<ll>;
using vpll = vc<pll>;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
#endif
#define cauto const auto
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0, nnnnn = ll(n); i < nnnnn; i++)
#define rep2(i, l, r) for (ll i = ll(l), rrrrr = ll(r); i < rrrrr; i++)
#define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define repi1(i, n) for (int i = 0, nnnnn = int(n); i < nnnnn; i++)
#define repi2(i, l, r) for (int i = int(l), rrrrr = int(r); i < rrrrr; i++)
#define repi3(i, l, r, d) for (int i = int(l), rrrrr = int(r), ddddd = int(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d)
#define repi(...) overload4(__VA_ARGS__, repi3, repi2, repi1)(__VA_ARGS__)
#define fec(...) for (cauto &__VA_ARGS__)
#define fem(...) for (auto &__VA_ARGS__)
template <class T, class U>
inline bool chmin(T &a, U b) { return a > b ? a = b, true : false; }
template <class T = ll, class U, class V>
inline constexpr T divfloor(U a, V b) { return T(a) / T(b) - (T(a) % T(b) && (T(a) ^ T(b)) < 0); }
template <class T = ll, class U, class V>
inline constexpr T safemod(U a, V b) { return T(a) - T(b) * divfloor<T>(a, b); }
template <class T = ll, class U, class V>
constexpr T ipow(U a, V b)
{
assert(b >= 0);
if (b == 0)
return 1;
if (a == 0 || a == 1)
return a;
if (a < 0 && a == -1)
return b & 1 ? -1 : 1;
T res = 1, tmp = a;
while (true)
{
if (b & 1)
res *= tmp;
b >>= 1;
if (b == 0)
break;
tmp *= tmp;
}
return res;
}
template <class T = ll, class A, class B, class M>
T mul_limited(A a, B b, M m)
{
assert(a >= 0 && b >= 0 && m >= 0);
if (b == 0)
return 0;
return T(a) > T(m) / T(b) ? T(m) : T(a) * T(b);
}
template <class T = ll, class A, class B>
T mul_limited(A a, B b) { return mul_limited<T>(a, b, INF); }
template <class T = ll, class A, class B, class M>
T pow_limited(A a, B b, M m)
{
assert(a >= 0 && b >= 0 && m >= 0);
if (a <= 1 || b == 0)
return min(ipow<T>(a, b), T(m));
T res = 1, tmp = a;
while (true)
{
if (b & 1)
{
if (res > T(m) / tmp)
return m;
res *= tmp;
}
b >>= 1;
if (b == 0)
break;
if (tmp > T(m) / tmp)
return m;
tmp *= tmp;
}
return res;
}
template <class T = ll, class A, class B>
T pow_limited(A a, B b) { return pow_limited<T>(a, b, INF); }
#define ALL(a) (a).begin(), (a).end()
template <class T = ll, class V>
inline T SZ(const V &x) { return x.size(); }
#define eb emplace_back
#define LMD(x, fx) ([&](auto x) { return fx; })
template <class T, size_t d, size_t i = 0, class V>
auto dvec(const V (&sz)[d], const T &init)
{
if constexpr (i < d)
return vc(sz[i], dvec<T, d, i + 1>(sz, init));
else
return init;
}
template <class V>
auto MAX(const V &v) { return *max_element(ALL(v)); }
template <class T, class U>
vc<T> permuted(const vc<T> &a, const vc<U> &p)
{
const int n = p.size();
vc<T> res(n);
repi(i, n)
{
assert(0 <= p[i] && p[i] < U(a.size()));
res[i] = a[p[i]];
}
return res;
}
template <class T, class U, class... Ts>
vc<T> permuted(const vc<T> &p, const vc<U> &q, const vc<Ts> &...rs)
{
return permuted(permuted(p, q), rs...);
}
#if __cplusplus < 202002L
#else
#endif
template <class V>
void unique(V &v) { v.erase(std::unique(ALL(v)), v.end()); }
template <class V, class U>
void rotate(V &v, U k)
{
const U n = v.size();
k = (k % n + n) % n;
std::rotate(v.begin(), v.begin() + k, v.end());
}
template <class T>
vvc<T> top(const vvc<T> &a)
{
if (a.empty())
return {};
const int n = a.size(), m = a[0].size();
vvc<T> b(m, vc<T>(n));
repi(i, n)
{
assert(SZ<int>(a[i]) == m);
repi(j, m) b[j][i] = a[i][j];
}
return b;
}
template <class M>
vc<typename M::S> cuml(const vc<typename M::S> &v, int left_index = 0)
{
const int n = v.size();
vc<typename M::S> res(n + 1);
res[0] = M::e();
repi(i, n) res[i + 1] = M::op(res[i], v[i]);
res.erase(res.begin(), res.begin() + left_index);
return res;
}
const vpll DRULgrid = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
const vpll DRULplane = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}};
template <class T>
struct is_random_access_iterator
{
static constexpr bool value = is_same_v<
typename iterator_traits<T>::iterator_category,
random_access_iterator_tag
>;
};
template <class T>
constexpr bool is_random_access_iterator_v = is_random_access_iterator<T>::value;
#if __cplusplus < 202002L
namespace internal
{
};
#else
#endif
template <class T>
inline constexpr ull MASK(T k) { return (1ULL << k) - 1ULL; }
#if __cplusplus < 202002L
inline constexpr ull bit_width(ull x) { return x == 0 ? 0 : 64 - __builtin_clzll(x); }
inline constexpr ull bit_ceil(ull x) { return x == 0 ? 1ULL : 1ULL << bit_width(x - 1); }
inline constexpr ull countr_zero(ull x) { assert(x != 0); return __builtin_ctzll(x); }
#else
inline constexpr ll bit_width(ll x) { return std::bit_width((ull)x); }
inline constexpr ll bit_floor(ll x) { return std::bit_floor((ull)x); }
inline constexpr ll bit_ceil(ll x) { return std::bit_ceil((ull)x); }
inline constexpr ll countr_zero(ll x) { assert(x != 0); return std::countr_zero((ull)x); }
inline constexpr ll popcount(ll x) { return std::popcount((ull)x); }
inline constexpr bool has_single_bit(ll x) { return std::has_single_bit((ull)x); }
#endif
#define dump(...)
template <class T, class Sequence>
vc<T> content(queue<T, Sequence> que)
{
vc<T> res;
while (!que.empty())
{
res.eb(que.front());
que.pop();
}
return res;
}
template <class T, class Sequence, class Compare>
vc<T> content(priority_queue<T, Sequence, Compare> pque)
{
vc<T> res;
while (!pque.empty())
{
res.eb(pque.top());
pque.pop();
}
return res;
}
namespace fastio {
static constexpr uint32_t SIZ = 1 << 17;
char ibuf[SIZ];
char obuf[SIZ];
char out[100];
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SIZ - pir + pil, stdin);
pil = 0;
if (pir < SIZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
template <typename T>
void rd1_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd1(ll &x) { rd1_integer(x); }
template <class T, class U>
void rd1(pair<T, U> &p) {
return rd1(p.first), rd1(p.second);
}
template <size_t N = 0, typename T>
void rd1_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd1(x);
rd1_tuple<N + 1>(t);
}
}
template <class... T>
void rd1(tuple<T...> &tpl) {
rd1_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd1(array<T, N> &x) {
for (auto &d: x) rd1(d);
}
template <class T>
void rd1(vc<T> &x) {
for (auto &d: x) rd1(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd1(h), read(t...);
}
void wt1(const char c) {
if (por == SIZ) flush();
obuf[por++] = c;
}
template <typename T>
void wt1_integer(T x) {
if (por > SIZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
void wt1(int x) { wt1_integer(x); }
template <class T, enable_if_t<is_integral_v<T>, int> = 0>
void wt1(T x) { wt1_integer(x); }
template <class T, class U>
void wt1(const pair<T, U> &val) {
wt1(val.first);
wt1(' ');
wt1(val.second);
}
template <size_t N = 0, typename T>
void wt1_tuple(const T &t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt1(' '); }
const auto x = std::get<N>(t);
wt1(x);
wt1_tuple<N + 1>(t);
}
}
template <class... T>
void wt1(const tuple<T...> &tpl) {
wt1_tuple(tpl);
}
template <class T, size_t S>
void wt1(const array<T, S> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt1(' ');
wt1(val[i]);
}
}
template <class T>
void wt1(const vector<T> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt1(' ');
wt1(val[i]);
}
}
void print() { wt1('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt1(head);
if (sizeof...(Tail)) wt1(' ');
print(forward<Tail>(tail)...);
}
} // namespace fastio
struct Dummy {
Dummy() { atexit(fastio::flush); }
} dummy;
namespace internal
{
template <class... Ts>
void READnodump(Ts &...a) { fastio::read(a...); }
template <class T>
void READVECnodump(int n, vc<T> &v)
{
v.resize(n);
READnodump(v);
}
template <class T, class... Ts>
void READVECnodump(int n, vc<T> &v, vc<Ts> &...vs)
{ READVECnodump(n, v), READVECnodump(n, vs...); }
template <class T>
void READVEC2nodump(int n, int m, vvc<T> &v)
{
v.assign(n, vc<T>(m));
READnodump(v);
}
template <class T, class... Ts>
void READVEC2nodump(int n, int m, vvc<T> &v, vvc<Ts> &...vs)
{ READVEC2nodump(n, m, v), READVEC2nodump(n, m, vs...); }
template <class T>
void READJAGnodump(int n, vvc<T> &v)
{
v.resize(n);
repi(i, n)
{
int k;
READnodump(k);
READVECnodump(k, v[i]);
}
}
template <class T, class... Ts>
void READJAGnodump(int n, vvc<T> &v, vvc<Ts> &...vs)
{ READJAGnodump(n, v), READJAGnodump(n, vs...); }
}; // namespace internal
#define READ(...) internal::READnodump(__VA_ARGS__); dump(__VA_ARGS__)
#define IN(T, ...) T __VA_ARGS__; READ(__VA_ARGS__)
#define LL(...) IN(ll, __VA_ARGS__)
#define PRINT fastio::print
template <class T, class U, class P>
pair<T, U> operator+=(pair<T, U> &a, const P &b)
{
a.first += b.first;
a.second += b.second;
return a;
}
template <class T, class U, class P>
pair<T, U> operator+(pair<T, U> &a, const P &b) { return a += b; }
template <class T, size_t n, class A>
array<T, n> operator+=(array<T, n> &a, const A &b)
{
for (size_t i = 0; i < n; i++)
a[i] += b[i];
return a;
}
template <class T, size_t n, class A>
array<T, n> operator+(array<T, n> &a, const A &b) { return a += b; }
namespace internal
{
template <size_t... I, class A, class B>
auto tuple_add_impl(A &a, const B &b, const index_sequence<I...>)
{
((get<I>(a) += get<I>(b)), ...);
return a;
}
}; // namespace internal
template <class... Ts, class Tp>
tuple<Ts...> operator+=(tuple<Ts...> &a, const Tp &b)
{ return internal::tuple_add_impl(a, b, make_index_sequence<tuple_size_v<tuple<Ts...>>>{}); }
template <class... Ts, class Tp>
tuple<Ts...> operator+(tuple<Ts...> &a, const Tp &b) { return a += b; }
template <class T, const size_t m>
array<vc<T>, m> top(const vc<array<T, m>> &vt)
{
const size_t n = vt.size();
array<vc<T>, m> tv;
tv.fill(vc<T>(n));
for (size_t i = 0; i < n; i++)
for (size_t j = 0; j < m; j++)
tv[j][i] = vt[i][j];
return tv;
}
template <class T, const size_t m>
vc<array<T, m>> top(const array<vc<T>, m> &tv)
{
if (tv.empty()) return {};
const size_t n = tv[0].size();
vc<array<T, m>> vt(n);
for (size_t j = 0; j < m; j++)
{
assert(tv[j].size() == n);
for (size_t i = 0; i < n; i++)
vt[i][j] = tv[j][i];
}
return vt;
}
template <class T, class U>
pair<vc<T>, vc<U>> top(const vc<pair<T, U>> &vt)
{
const size_t n = vt.size();
pair<vc<T>, vc<U>> tv;
tv.first.resize(n), tv.second.resize(n);
for (size_t i = 0; i < n; i++)
tie(tv.first[i], tv.second[i]) = vt[i];
return tv;
}
template <class T, class U>
vc<pair<T, U>> top(const pair<vc<T>, vc<U>> &tv)
{
const size_t n = tv.first.size();
assert(n == tv.second.size());
vc<pair<T, U>> vt(n);
for (size_t i = 0; i < n; i++)
vt[i] = make_pair(tv.first[i], tv.second[i]);
return vt;
}
namespace internal
{
template <size_t... I, class V, class Tp>
auto vt_to_tv_impl(V &tv, const Tp &t, index_sequence<I...>, size_t index)
{ ((get<I>(tv)[index] = get<I>(t)), ...); }
template <size_t... I, class Tp>
auto tv_to_vt_impl(const Tp &tv, index_sequence<I...>, size_t index)
{ return make_tuple(get<I>(tv)[index]...); }
};
template <class... Ts>
auto top(const vc<tuple<Ts...>> &vt)
{
const size_t n = vt.size();
tuple<vc<Ts>...> tv;
apply([&](auto &...v)
{ ((v.resize(n)), ...); }, tv);
for (size_t i = 0; i < n; i++)
internal::vt_to_tv_impl(tv, vt[i], make_index_sequence<tuple_size_v<decltype(tv)>>{}, i);
return tv;
}
template <class... Ts>
auto top(const tuple<vc<Ts>...> &tv)
{
size_t n = get<0>(tv).size();
apply([&](auto &...v)
{ ((assert(v.size() == n)), ...); }, tv);
vc<tuple<Ts...>> vt(n);
for (size_t i = 0; i < n; i++)
vt[i] = internal::tv_to_vt_impl(tv, index_sequence_for<Ts...>{}, i);
return vt;
}
mt19937_64 mt;
template <class T>
struct Binomial
{
private:
static decltype(T::mod()) mod;
static vc<T> fac_, finv_, inv_;
public:
static void reserve(int n)
{
if (mod != T::mod())
{
mod = T::mod();
fac_ = {1, 1}, finv_ = {1, 1}, inv_ = {0, 1};
}
int i = fac_.size();
chmin(n, T::mod() - 1);
if (n < i)
return;
fac_.resize(n + 1), finv_.resize(n + 1), inv_.resize(n + 1);
for (; i <= n; i++)
{
fac_[i] = fac_[i - 1] * T::raw(i);
inv_[i] = -inv_[T::mod() % i] * T::raw(T::mod() / i);
finv_[i] = finv_[i - 1] * inv_[i];
}
}
static T inv(T n)
{
assert(n != 0);
reserve(n.val());
return inv_[n.val()];
}
};
template <class T> decltype(T::mod()) Binomial<T>::mod{};
template <class T> vc<T> Binomial<T>::fac_{};
template <class T> vc<T> Binomial<T>::finv_{};
template <class T> vc<T> Binomial<T>::inv_{};
namespace internal
{
constexpr ll powmod32_constexpr(ll x, ll n, int m)
{
if (m == 1)
return 0;
uint _m = (uint)m;
ull r = 1;
ull y = safemod(x, m);
while (n)
{
if (n & 1)
r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool isprime32_constexpr(int n)
{
if (n <= 1)
return false;
if (n == 2 || n == 7 || n == 61)
return true;
if (n % 2 == 0)
return false;
ll d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr ll bases[3] = {2, 7, 61};
for (ll a : bases)
{
ll t = d;
ll y = powmod32_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1)
{
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0)
return false;
}
return true;
}
template <int n>
constexpr bool isprime32 = isprime32_constexpr(n);
struct barrett32
{
uint m;
ull im;
explicit barrett32(uint m) : m(m), im((ull)(-1) / m + 1) {}
uint umod() const { return m; }
uint mul(uint a, uint b) const
{
ull z = a;
z *= b;
ull x = (ull)((u128(z)*im) >> 64);
ull y = x * m;
return (uint)(z - y + (z < y ? m : 0));
}
};
}
namespace internal
{
#define REF static_cast<mint &>(*this)
#define CREF static_cast<const mint &>(*this)
#define VAL *static_cast<const mint *>(this)
template <class mint>
struct modint_base
{
mint &operator+=(const mint &rhs)
{
mint &self = REF;
self._v += rhs._v;
if (self._v >= self.umod())
self._v -= self.umod();
return self;
}
mint &operator-=(const mint &rhs)
{
mint &self = REF;
self._v -= rhs._v;
if (self._v >= self.umod())
self._v += self.umod();
return self;
}
mint &operator/=(const mint &rhs)
{
mint &self = REF;
return self = self * rhs.inv();
}
mint &operator++()
{
mint &self = REF;
self._v++;
if (self._v == self.umod())
self._v = 0;
return self;
}
mint &operator--()
{
mint &self = REF;
if (self._v == 0)
self._v = self.umod();
self._v--;
return self;
}
mint operator++(int)
{
mint res = VAL;
++REF;
return res;
}
mint operator--(int)
{
mint res = VAL;
--REF;
return res;
}
mint operator+() const { return VAL; }
mint operator-() const { return mint() - VAL; }
mint pow(ll n) const
{
assert(n >= 0);
mint x = VAL, r = 1;
while (n)
{
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
friend mint operator+(const mint &lhs, const mint &rhs)
{ return mint(lhs) += rhs; }
friend mint operator-(const mint &lhs, const mint &rhs)
{ return mint(lhs) -= rhs; }
friend mint operator*(const mint &lhs, const mint &rhs)
{ return mint(lhs) *= rhs; }
friend mint operator/(const mint &lhs, const mint &rhs)
{ return mint(lhs) /= rhs; }
friend bool operator==(const mint &lhs, const mint &rhs)
{ return mint(lhs).eq(rhs); }
friend bool operator!=(const mint &lhs, const mint &rhs)
{ return mint(lhs).neq(rhs); }
private:
bool eq(const mint &rhs) { return REF._v == rhs._v; }
bool neq(const mint &rhs) { return REF._v != rhs._v; }
};
}
template <typename T, std::enable_if_t<std::is_base_of_v<internal::modint_base<T>, T>, int> = 0>
void rd1(T &x)
{
ll a;
fastio::rd1(a);
x = a;
}
template <typename T, std::enable_if_t<std::is_base_of_v<internal::modint_base<T>, T>, int> = 0>
void wt1(const T &x) { fastio::wt1(x.val()); }
template <class T = ll>
constexpr tuple<T, T, T> extgcd(const T &a, const T &b)
{
if (a == 0 && b == 0)
return {0, 0, 0};
T x1 = 1, y1 = 0, z1 = a;
T x2 = 0, y2 = 1, z2 = b;
while (z2 != 0)
{
T q = z1 / z2;
tie(x1, x2) = make_pair(x2, x1 - q * x2);
tie(y1, y2) = make_pair(y2, y1 - q * y2);
tie(z1, z2) = make_pair(z2, z1 - q * z2);
}
if (z1 < 0)
x1 = -x1, y1 = -y1, z1 = -z1;
return {z1, x1, y1};
}
template <int m>
struct static_modint : internal::modint_base<static_modint<m>>
{
using mint = static_modint;
private:
friend struct internal::modint_base<static_modint<m>>;
uint _v;
static constexpr uint umod() { return m; }
static constexpr bool prime = internal::isprime32<m>;
public:
static constexpr int mod() { return m; }
static mint raw(int v)
{
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T>
static_modint(T v)
{
if constexpr (is_signed_v<T>)
{
ll x = (ll)(v % (ll)(umod()));
if (x < 0)
x += umod();
_v = (uint)x;
}
else if constexpr (is_unsigned_v<T>)
{
_v = (uint)(v % umod());
}
else
{
static_assert(is_signed_v<T> || is_unsigned_v<T>, "Unsupported Type");
}
}
int val() const { return (int)_v; }
mint& operator*=(const mint &rhs)
{
ull z = _v;
z *= rhs._v;
_v = (uint)(z % umod());
return *this;
}
mint inv() const
{
if (prime)
{
assert(_v != 0);
return CREF.pow(umod() - 2);
}
else
{
auto [g, x, y] = extgcd<int>(_v, m);
assert(g == 1);
return x;
}
}
};
template <int id>
struct dynamic_modint : internal::modint_base<dynamic_modint<id>>
{
using mint = dynamic_modint;
private:
friend struct internal::modint_base<dynamic_modint<id>>;
uint _v;
static internal::barrett32 bt;
static uint umod() { return bt.umod(); }
public:
static int mod() { return (int)(bt.umod()); }
static mint raw(int v)
{
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T>
dynamic_modint(T v)
{
if constexpr (is_signed_v<T>)
{
ll x = (ll)(v % (ll)(umod()));
if (x < 0)
x += umod();
_v = (uint)x;
}
else if constexpr (is_unsigned_v<T>)
{
_v = (uint)(v % umod());
}
else
{
static_assert(is_signed_v<T> || is_unsigned_v<T>, "Unsupported Type");
}
}
int val() const { return (int)_v; }
mint& operator*=(const mint &rhs)
{
_v = bt.mul(_v, rhs._v);
return *this;
}
mint inv() const
{
auto [g, x, y] = extgcd<int>(_v, mod());
assert(g == 1);
return x;
}
};
template <int id>
internal::barrett32 dynamic_modint<id>::bt(998244353);
using modint1000000007 = static_modint<1000000007>;
template <class T>
struct is_static_modint : false_type {};
template <int m>
struct is_static_modint<static_modint<m>> : true_type {};
template <class T>
inline constexpr bool is_static_modint_v = is_static_modint<T>::value;
template <class T>
struct is_dynamic_modint : false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : true_type {};
template <class T>
inline constexpr bool is_dynamic_modint_v = is_dynamic_modint<T>::value;
template <class mint, class T = ll, class U1, class U2, size_t n>
constexpr pair<mint, mint> crt_mod_constexpr(const array<U1, n> &rs, const array<U2, n> &ms)
{
assert(rs.size() == ms.size());
mint r = 0, m = 1;
array<T, n> rr{}, mm;
fill(ALL(mm), 1);
repi(i, n)
{
assert(ms[i] >= U2(1));
assert(U1(0) <= rs[i] && U2(rs[i]) < ms[i]);
auto [g, im, _] = extgcd<T>(mm[i], ms[i]);
assert(g == 1);
T t = safemod((rs[i] - rr[i]) * im, ms[i]);
r += t * m, m *= ms[i];
repi(j, i + 1, n)
{
rr[j] += t * mm[j] % ms[j];
if (rr[j] >= ms[j])
rr[j] -= ms[j];
mm[j] *= ms[i], mm[j] %= ms[j];
}
}
return {r, m};
}
namespace internal
{
constexpr int primitive_root_constexpr(int m)
{
if (m == 2)
return 1;
if (m == 167772161)
return 3;
if (m == 469762049)
return 3;
if (m == 754974721)
return 11;
if (m == 998244353)
return 3;
if (m == 1107296257)
return 10;
if (m == 1711276033)
return 29;
if (m == 1811939329)
return 13;
if (m == 2013265921)
return 31;
if (m == 2113929217)
return 5;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0)
x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2)
{
if (x % i == 0)
{
divs[cnt++] = i;
while (x % i == 0)
{
x /= i;
}
}
}
if (x > 1)
{
divs[cnt++] = x;
}
for (int g = 2;; g++)
{
bool ok = true;
for (int i = 0; i < cnt; i++)
{
if (powmod32_constexpr(g, (m - 1) / divs[i], m) == 1)
{
ok = false;
break;
}
}
if (ok)
return g;
}
}
template <int m>
constexpr int primitive_root_for_convolution = primitive_root_constexpr(m);
template <class mint, int g = internal::primitive_root_for_convolution<mint::mod()>>
struct fft_info
{
static constexpr int rank2 = countr_zero(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info()
{
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--)
{
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++)
{
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++)
{
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
} // namespace internal
template <class mint>
bool ntt_ok(int n)
{
if constexpr (is_static_modint_v<mint>)
{
if constexpr (!internal::isprime32<mint::mod()>)
return false;
static constexpr int rank2 = countr_zero(mint::mod() - 1);
return n <= (1 << rank2);
}
else
return false;
}
template <int id>
void ntt(vc<dynamic_modint<id>> &) {}
template <int id>
void intt(vc<dynamic_modint<id>> &) {}
template <int mod>
void ntt(vc<static_modint<mod>> &a)
{
using mint = static_modint<mod>;
int n = int(a.size());
int h = countr_zero((unsigned int)n);
static const internal::fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h)
{
if (h - len == 1)
{
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++)
{
int offset = s << (h - len);
for (int i = 0; i < p; i++)
{
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[countr_zero(~(unsigned int)(s))];
}
len++;
}
else
{
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++)
{
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++)
{
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[countr_zero(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <int mod>
void intt(vc<static_modint<mod>> &a)
{
using mint = static_modint<mod>;
int n = int(a.size());
int h = countr_zero((unsigned int)n);
static const internal::fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len)
{
if (len == 1)
{
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++)
{
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++)
{
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - (uint)r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[countr_zero(~(unsigned int)(s))];
}
len--;
}
else
{
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++)
{
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++)
{
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[countr_zero(~(unsigned int)(s))];
}
len -= 2;
}
}
}
namespace internal
{
template <class mint>
vc<mint> convolution_naive(const vc<mint> &a, const vc<mint> &b)
{
const int n = a.size(), m = b.size();
const int cnta = n - count(ALL(a), 0), cntb = m - count(ALL(b), 0);
vc<mint> c(n + m - 1);
if ((ll)m * cnta > (ll)n * cntb)
{
repi(j, m)
{
if (b[j] == 0)
continue;
repi(i, n) c[i + j] += a[i] * b[j];
}
}
else
{
repi(i, n)
{
if (a[i] == 0)
continue;
repi(j, m) c[i + j] += a[i] * b[j];
}
}
return c;
}
template <class mint>
vc<mint> convolution_ntt(vc<mint> a, vc<mint> b)
{
const int n = a.size(), m = b.size();
const int z = bit_ceil(n + m - 1);
if (a == b)
{
a.resize(z);
ntt(a);
repi(i, z) a[i] *= a[i];
}
else
{
a.resize(z), b.resize(z);
ntt(a), ntt(b);
repi(i, z) a[i] *= b[i];
}
intt(a);
mint iz = mint(z).inv();
fem(ai : a) ai *= iz;
a.resize(n + m - 1);
return a;
}
template <size_t j, int mod, class T, size_t k>
void convolution_crt_helper(const vc<T> &a, const vc<T> &b, vc<array<T, k>> &cs)
{
using mint = static_modint<mod>;
const int n = a.size(), m = b.size();
auto c = convolution_ntt(vc<mint>(ALL(a)), vc<mint>(ALL(b)));
repi(i, n + m - 1) cs[i][j] = c[i].val();
}
template <class mint, int... ms, class T>
vc<mint> convolution_crt_mod(const vc<T> &a, const vc<T> &b)
{
const int n = a.size(), m = b.size();
constexpr size_t k = sizeof...(ms);
vc<array<T, k>> cs(n + m - 1);
constexpr array<int, k> ms_arr = {ms...};
[&]<size_t... Is>(index_sequence<Is...>)
{
(convolution_crt_helper<Is, ms_arr[Is], T, k>(a, b, cs), ...);
}(make_index_sequence<k>{});
vc<mint> c(n + m - 1);
repi(i, n + m - 1) c[i] = crt_mod_constexpr<mint>(cs[i], ms_arr).first;
return c;
}
} // namespace internal
template <class mint, typename = std::enable_if_t<!std::is_integral<mint>::value>>
vc<mint> convolution(const vc<mint> &a, const vc<mint> &b)
{
const int n = a.size(), m = b.size();
const int cnta = n - count(ALL(a), 0), cntb = m - count(ALL(b), 0);
if (n == 0 || m == 0)
return {};
if (ntt_ok<mint>(n + m - 1))
{
if (min(cnta, cntb) <= 60)
return internal::convolution_naive(a, b);
return internal::convolution_ntt(a, b);
}
else
{
if (min(cnta, cntb) <= 300)
return internal::convolution_naive(a, b);
assert(ntt_ok<static_modint<469762049>>(n + m - 1) && "|a| + |b| - 1 <= 2^26");
vc<ll> a_(n), b_(m);
repi(i, n) a_[i] = a[i].val();
repi(j, m) b_[j] = b[j].val();
return internal::convolution_crt_mod<mint, 469762049, 1811939329, 2013265921>(a_, b_);
}
}
template <int mod = 998244353, class T, typename = enable_if_t<is_integral<T>::value>>
vc<T> convolution(const vc<T> &a, const vc<T> &b)
{
using mint = static_modint<mod>;
auto c = convolution(vc<mint>(ALL(a)), vc<mint>(ALL(b)));
vc<T> c_(c.size());
repi(i, c.size()) c_[i] = c[i].val();
return c_;
}
namespace internal
{
constexpr ll powmod64_constexpr(ll x, ll n, ll m)
{
if (m == 1)
return 0;
ull _m = (ull)m;
ull r = 1;
ull y = safemod(x, m);
while (n)
{
u128 y128(y);
if (n & 1)
r = (y128 * r) % _m;
y = (y128 * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool isprime64_constexpr(ll n)
{
if (n <= INT_MAX)
return isprime32_constexpr(n);
if (n % 2 == 0)
return false;
ll d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr ll bases[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
for (ll a : bases)
{
ll t = d;
ll y = powmod64_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1)
{
y = (u128(y) * y) % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0)
return false;
}
return true;
}
template <ll n>
constexpr bool isprime64 = isprime64_constexpr(n);
inline constexpr ull inv64(ull a)
{
ull x = a;
while (a * x != 1) x *= 2 - a * x;
return x;
}
struct montgomery64odd
{
ull m, im, sq;
explicit montgomery64odd(ull m) : m(m), im(inv64(m)), sq(-u128(m) % m) {}
ull umod() const { return m; }
ull reduce(u128 x) const
{
auto t = (x + u128(m) * (-im * ull(x))) >> 64;
if (t >= m)
t -= m;
return (ull)t;
}
ull inv_reduce(i128 v) const
{ return reduce(u128(v % m + m) * sq); }
};
struct montgomery64
{
ull m, mx, imx, d, q;
uint b;
explicit montgomery64(ull m) : m(m)
{
b = countr_zero(m), mx = m >> b; // m == 2^b * mx, mx is odd
imx = inv64(mx);
d = powmod64_constexpr((mx + 1) / 2, b, mx); // 2^{-b} mod mx
u128 sq = -u128(mx) % mx; // 2^128 mod mx
q = (1 + (((sq - 1) * d) << b)) % m;
}
ull umod() const { return m; }
ull reduce(u128 x) const
{
ull p = x & MASK(b); // x mod 2^b
x = (x >> b) + p * d;
ull y = p << (64 - b);
auto t = (x + u128(mx) * (imx * (y - ull(x)))) >> (64 - b);
if (t >= m)
{
t -= m;
if (t >= m)
t -= m;
}
return (ull)t;
}
ull inv_reduce(i128 v) const
{ return reduce(u128(v % m + m) * q); }
};
}
template <ll m>
struct static_modint64 : internal::modint_base<static_modint64<m>>
{
using mint = static_modint64;
private:
friend struct internal::modint_base<static_modint64<m>>;
ull _v;
static constexpr ull umod() { return m; }
static constexpr bool prime = internal::isprime64<m>;
public:
static constexpr ll mod() { return m; }
static mint raw(ll v)
{
mint x;
x._v = v;
return x;
}
static_modint64() : _v(0) {}
template <class T>
static_modint64(T v)
{
if constexpr (is_unsigned_v<T>)
{
_v = (ull)(v % umod());
}
else
{
ll x = (ll)(v % (ll)(umod()));
if (x < 0)
x += umod();
_v = (ull)x;
}
}
ll val() const { return (ll)_v; }
mint& operator*=(const mint &rhs)
{
u128 z = _v;
z *= rhs._v;
_v = (ull)(z % umod());
return *this;
}
mint inv() const
{
if (prime)
{
assert(_v != 0);
return CREF.pow(umod() - 2);
}
else
{
auto [g, x, y] = extgcd<ll>(_v, m);
assert(g == 1);
return x;
}
}
};
template <int id>
struct dynamic_modint64_odd : internal::modint_base<dynamic_modint64_odd<id>>
{
using mint = dynamic_modint64_odd;
private:
friend struct internal::modint_base<dynamic_modint64_odd<id>>;
ull _v; // montgomery expression
static internal::montgomery64odd mg;
static ull umod() { return mg.umod(); }
public:
static ll mod() { return (ll)(mg.umod()); }
dynamic_modint64_odd() : _v(0) {}
dynamic_modint64_odd(i128 v)
{ _v = mg.inv_reduce(v); }
ll val() const { return (ll)mg.reduce(_v); }
mint& operator*=(const mint &rhs)
{
_v = mg.reduce(u128(_v) * rhs._v);
return *this;
}
mint inv() const
{
auto [g, x, y] = extgcd<ll>(val(), mod());
assert(g == 1);
return x;
}
};
template <int id>
internal::montgomery64odd dynamic_modint64_odd<id>::mg((1LL << 61) - 1);
template <int id>
struct dynamic_modint64 : internal::modint_base<dynamic_modint64<id>>
{
using mint = dynamic_modint64;
private:
friend struct internal::modint_base<dynamic_modint64<id>>;
ull _v; // montgomery expression
static internal::montgomery64 mg;
static ull umod() { return mg.umod(); }
public:
static ll mod() { return (ll)(mg.umod()); }
dynamic_modint64() : _v(0) {}
dynamic_modint64(i128 v)
{ _v = mg.inv_reduce(v); }
ll val() const { return (ll)mg.reduce(_v); }
mint& operator*=(const mint &rhs)
{
_v = mg.reduce(u128(_v) * rhs._v);
return *this;
}
mint inv() const
{
auto [g, x, y] = extgcd<ll>(val(), mod());
assert(g == 1);
return x;
}
};
template <int id>
internal::montgomery64 dynamic_modint64<id>::mg((1LL << 61) - 1);
namespace internal
{
}; // namespace internal
template <class mint>
struct FormalPowerSeries : vc<mint>
{
using F = FormalPowerSeries;
using vc<mint>::vc;
using vc<mint>::operator=;
using vc<mint>::size;
using vc<mint>::empty;
using vc<mint>::back;
using vc<mint>::pop_back;
using vc<mint>::begin;
using vc<mint>::resize;
using vc<mint>::front;
FormalPowerSeries(const vc<mint> &f) : vc<mint>(f) {}
int sz() const { return size(); }
void shrink()
{
while (!empty() && back() == 0)
pop_back();
}
mint get(int i) const { return 0 <= i && i < sz() ? (*this)[i] : 0; }
F pre(int len) const
{
assert(len >= 0);
return F(begin(), begin() + min(sz(), len));
}
F rev(int d = -1) const
{
F res(*this);
if (d >= 0)
res.resize(d);
reverse(ALL(res));
return res;
}
int cnt_nz() const { return count_if(ALL(*this), LMD(x, x != 0)); }
tuple<bool, int, mint> nz_front() const
{
repi(i, sz()) if ((*this)[i] != 0) return {true, i, (*this)[i]};
return {false, -1, 0};
}
vc<pair<int, mint>> nz() const
{
vc<pair<int, mint>> res;
repi(i, sz()) if ((*this)[i] != 0) res.eb(i, (*this)[i]);
return res;
}
F operator-() const
{
F res(*this);
fem(a : res) a = -a;
return res;
}
F &operator*=(const mint &k)
{
fem(a : *this) a *= k;
return *this;
}
F operator*(const mint &k) const { return F(*this) *= k; }
friend F operator*(const mint &k, const F &f) { return f * k; }
F &operator/=(const mint &k)
{
*this *= k.inv();
return *this;
}
F operator/(const mint &k) const { return F(*this) /= k; }
F &operator+=(const F &g)
{
const int n = size(), m = g.size();
resize(max(n, m));
repi(i, m)(*this)[i] += g[i];
return *this;
}
F operator+(const F &g) const { return F(*this) += g; }
F &operator-=(const F &g)
{
const int n = size(), m = g.size();
resize(max(n, m));
repi(i, m)(*this)[i] -= g[i];
return *this;
}
F operator-(const F &g) const { return F(*this) -= g; }
F &operator*=(const F &g) { return *this = *this * g; }
F operator*(const F &g) const { return convolution(*this, g); }
F div_sparse_destructive(const F &g, int d = -1)
{
assert(g.get(0) != 0);
if (d < 0)
d = sz();
mint iv = g.front().inv();
auto gnz = g.nz();
resize(d);
repi(i, d)
{
fec([j, b] : gnz)
{
if (j == 0)
continue;
if (j > i)
break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= iv;
}
return pre(d);
}
F div_sparse(const F &g, int d = -1) const { return F(*this).div_sparse_destructive(g, d); }
F inv(int d = -1) const
{
assert(get(0) != 0);
if (d < 0)
d = sz();
if (cnt_nz() <= 200)
return F{1}.div_sparse(*this, d);
F f, g2, g{front().inv()};
for (int m = 1; m < d; m *= 2)
{
if (ntt_ok<mint>(2 * m))
{
f = pre(2 * m), g2 = F(g);
f.resize(2 * m), ntt(f);
g2.resize(2 * m), ntt(g2);
repi(i, 2 * m) f[i] *= g2[i];
intt(f);
f >>= m;
f.resize(2 * m), ntt(f);
repi(i, 2 * m) f[i] *= g2[i];
intt(f);
mint iz = mint(2 * m).inv();
iz *= -iz;
repi(i, m) f[i] *= iz;
g.insert(g.end(), f.begin(), f.begin() + m);
}
else
g = (g * mint(2) - g * g * pre(2 * m)).pre(2 * m);
}
return g.pre(d);
}
F &operator/=(const F &g)
{
if (cnt_nz() <= 200)
{
div_sparse_destructive(g);
return *this;
}
*this *= g.inv();
return *this;
}
F operator/(const F &g) const { return F(*this) /= g; }
F div_poly(const F &g) const
{
const int n = sz() - g.sz() + 1;
if (n <= 0)
return {};
return (rev().pre(n) * g.rev().inv(n)).pre(n).rev();
}
pair<F, F> divmod(const F &g) const
{
F q = div_poly(g);
F r = *this - q * g;
r.shrink();
return {q, r};
}
F operator%(const F &g) const { return divmod(g).second; }
F &operator%=(const F &g) { return *this = *this % g; }
F circular_mod(int n) const
{
F res(n);
repi(i, sz()) res[i % n] += (*this)[i];
return res;
}
F operator<<(int k) const
{
F res(sz() + k);
repi(i, sz()) res[i + k] = (*this)[i];
return res;
}
F operator>>(int k) const
{
F res(max(0, sz() - k));
repi(i, sz() - k) res[i] = (*this)[i + k];
return res;
}
F &operator<<=(int k) { return *this = *this << k; }
F &operator>>=(int k) { return *this = *this >> k; }
F diff() const
{
F res(max(0, sz() - 1));
repi(i, 1, size()) res[i - 1] = (*this)[i] * i;
return res;
}
F integ() const
{
F res(sz() + 1);
repi(i, size()) res[i + 1] = (*this)[i] * Binomial<mint>::inv(i + 1);
return res;
}
F log(int d = -1) const
{
assert(get(0) == 1);
if (d < 0)
d = sz();
F f = pre(d);
return (f.diff() / f).pre(d - 1).integ();
}
static F diff_eq(const F &a, const F &b, int d)
{
assert(a.get(0) == 1);
assert(d >= 0);
if (d == 0)
return {};
F f(d);
f[0] = 1;
auto anz = a.nz(), bnz = b.nz();
repi(k, d - 1)
{
fec([i, ai] : anz)
{
if (0 <= k - i + 1)
f[k + 1] -= ai * (k - i + 1) * f[k - i + 1];
}
fec([j, bj] : bnz)
{
if (0 <= k - j && k - j < k + 1)
f[k + 1] -= bj * f[k - j];
}
f[k + 1] *= Binomial<mint>::inv(k + 1);
}
return f;
}
F exp_sparse(int d = -1) const
{
assert(get(0) == 0);
if (d < 0)
d = sz();
return diff_eq(F{1}, -diff(), d);
}
F pow_sparse(ll k, int d = -1) const
{
if (d < 0)
d = sz();
auto [exi, d0, a0] = nz_front();
if (!exi)
{
F res(d);
if (k == 0 && d > 0)
res[0] = 1;
return res;
}
mint ia0 = a0.inv();
F f = ((*this) >> d0) * ia0;
if (k >= 0)
{
F g = diff_eq(f, -k * f.diff(), d - mul_limited(d0, k, d));
F h = (g * a0.pow(k)) << mul_limited(d0, k, d);
return h.pre(d);
}
else
{
F g = diff_eq(f, -k * f.diff(), d + (d0 * (-k)));
F h = (g * ia0.pow(-k)) >> (d0 * (-k));
return h.pre(d);
}
}
F exp(int d = -1) const
{
assert(get(0) == 0);
if (d < 0)
d = sz();
if (ntt_ok<mint>(2 * d))
{
if (cnt_nz() <= 320)
return exp_sparse(d);
F f{1}, g{1};
F f2, g2, f3, q, s, h, u;
g2 = {0};
for (int m = 1; m < d; m *= 2)
{
mint im = mint(m).inv(), i2m = mint(2 * m).inv();
f2 = f, f2.resize(2 * m), ntt(f2);
f3 = f, ntt(f3);
repi(i, m) f3.at(i) *= g2.at(i);
intt(f3);
f3 >>= m / 2;
f3.resize(m), ntt(f3);
repi(i, m) f3.at(i) *= g2.at(i);
intt(f3);
repi(i, m / 2) f3.at(i) *= -im * im;
g.insert(g.end(), f3.begin(), f3.begin() + m / 2);
g2 = g, g2.resize(2 * m), ntt(g2);
q = diff(), q.resize(2 * m), fill(q.begin() + m - 1, q.end(), 0);
ntt(q);
repi(i, 2 * m) q.at(i) *= f2.at(i);
intt(q);
q = q.circular_mod(m);
repi(i, m) q.at(i) *= i2m;
q.resize(m + 1);
s = ((f.diff() - q) << 1).circular_mod(m);
s.resize(2 * m), ntt(s);
repi(i, 2 * m) s.at(i) *= g2.at(i);
intt(s);
repi(i, m) s.at(i) *= i2m;
s.resize(m);
h = *this, h.resize(2 * m), s.resize(2 * m);
u = (h - (s << (m - 1)).integ()) >> m;
ntt(u);
repi(i, 2 * m) u.at(i) *= f2.at(i);
intt(u);
repi(i, m) u.at(i) *= i2m;
u.resize(m);
f.insert(f.end(), u.begin(), u.end());
}
return f.pre(d);
}
else
{
if (cnt_nz() <= 3000)
return exp_sparse(d);
F f{1};
for (int m = 1; m < d; m *= 2)
{
f = (f * (pre(2 * m) + F{1} - f.log(2 * m))).pre(2 * m);
}
return f.pre(d);
}
}
F pow(ll k, int d = -1) const
{
if (ntt_ok<mint>(2 * d))
{
if (cnt_nz() <= 100)
return pow_sparse(k, d);
}
else
{
if (cnt_nz() <= 1300)
return pow_sparse(k, d);
}
if (d < 0)
d = sz();
if (k == 0)
{
F res(d);
res[0] = 1;
return res;
}
repi(i, sz())
{
if ((*this)[i] != 0)
{
mint iv = (*this)[i].inv();
F res = (((*this * iv) >> i).log(d) * mint(k)).exp(d);
res *= (*this)[i].pow(k);
res = (res << (i * k)).pre(d);
if (res.sz() < d)
res.resize(d);
return res;
}
if (mul_limited(i + 1, k, d) >= d)
return F(d);
}
return F(d);
}
};
template <class mint>
vc<mint> berlekamp_massey(const vc<mint> &a)
{
const int n = a.size();
vc<mint> b, c;
int pos = -1;
mint x = 0;
repi(i, n)
{
const int d = c.size();
mint y = a[i];
repi(j, d) y -= c[j] * a[i - 1 - j];
if (y == 0)
continue;
if (c.empty())
{
c.assign(i + 1, 0);
pos = i;
x = y;
continue;
}
mint z = y / x;
int d2 = i - pos + b.size();
vc<mint> tmp;
if (d2 >= d)
{
tmp = c;
c.resize(d2);
}
c[i - 1 - pos] += z;
repi(j, b.size()) c[i - pos + j] -= z * b[j];
if (d2 >= d)
pos = i, x = y, b = tmp;
}
c.insert(c.begin(), 0);
return c;
}
template <class mint>
mint bostan_mori(const FormalPowerSeries<mint> &p, const FormalPowerSeries<mint> &q, ll k)
{
using F = FormalPowerSeries<mint>;
auto [r, u] = p.divmod(q);
mint res = r.get(k);
const int d = SZ(q) - 1;
if (ntt_ok<mint>(2 * d + 1))
{
const int z = bit_ceil(2 * d + 1);
mint iz = mint(z).inv();
F v = q;
u.resize(z), v.resize(z);
while (k > 0)
{
ntt(u), ntt(v);
repi(i, 0, z, 2)
{
mint x = v[i + 1], y = v[i];
u[i] *= x, v[i] *= x;
u[i + 1] *= y, v[i + 1] *= y;
}
intt(u), intt(v);
repi(i, z / 2)
{
u[i] = u[2 * i + (k & 1)] * iz;
v[i] = v[2 * i] * iz;
}
repi(i, z / 2, z) u[i] = 0, v[i] = 0;
k >>= 1;
}
return res + u[0] / v[0];
}
else
{
F v = q;
u.resize(d + 1), v.resize(d + 1);
while (k > 0)
{
F w = v;
repi(i, 1, d + 1, 2) w[i] = -w[i];
F u2 = u * w, v2 = v * w;
repi(i, d + 1)
{
if (2 * i + (k & 1) < SZ(u2))
u[i] = u2[2 * i + (k & 1)];
if (2 * i < SZ(v2))
v[i] = v2[2 * i];
}
k >>= 1;
}
return res + u[0] / v[0];
}
}
template <class mint>
mint linear_recurrence(const vc<mint> &a, const vc<mint> &c, ll k)
{
using F = FormalPowerSeries<mint>;
const int d = SZ(c) - 1;
assert(d >= 1);
assert(SZ(a) >= d);
F q = -F(c);
q[0] = 1;
F p = (F(a) * q).pre(d);
return bostan_mori(p, q, k);
}
template <class T>
struct GroupAddSub
{
using S = T;
static constexpr S op(S a, S b) { return a + b; }
static constexpr S e() { return S(0); }
static constexpr S inv(S a) { return -a; }
};
template <class G = GroupAddSub<ll>>
struct Imos
{
using S = typename G::S;
private:
vc<S> d;
public:
Imos() {}
Imos(int n) : d(n, G::e()) {}
Imos(const vc<S> &a)
{
const int n = a.size();
d.assign(n, G::e());
repi(i, n) add(i, i + 1, a[i]);
}
void add(int l, int r, const S &v)
{
const int n = d.size();
assert(0 <= l && l <= r && r <= n);
d[l] = G::op(d[l], v);
if (r != n)
d[r] = G::op(d[r], G::inv(v));
}
vc<S> content() { return cuml<G>(d, 1); }
};
using mint = modint1000000007;
using fps = FormalPowerSeries<mint>;
vc<mint> f(const vl &A, ll K)
{
ll N = A.size(), M = MAX(A);
auto dp = dvec({K + 1, N, M * K + 1}, mint(0));
dp.at(0).at(0).at(0) = 1;
rep(k, K) rep(n, N) rep(s, M * K + 1)
{
rep(nn, n, N)
{
ll ns = s + A.at(nn);
if (ns <= M * K)
dp.at(k + 1).at(nn).at(ns) += dp.at(k).at(n).at(s);
}
}
vc<mint> res(M * K + 1);
rep(n, N) rep(s, M * K + 1) res.at(s) += dp.at(K).at(n).at(s);
return res;
}
void init() {}
void main2()
{
LL(N, P, C);
auto A = f({2, 3, 5, 7, 11, 13}, P);
auto B = f({4, 6, 8, 9, 10, 12}, C);
dump(A | cp::index(), B | cp::index());
fps f = convolution(A, B);
dump(f | cp::index());
const ll MAX_N = 20000;
fps g = (fps{1} - f).inv(MAX_N);
Imos<GroupAddSub<mint>> imos(MAX_N);
rep(i, MAX_N) rep(j, SZ(f))
{
imos.add(i + 1, min(MAX_N, i + j + 1), g.at(i) * f.at(j));
}
auto anss = imos.content();
auto coef = berlekamp_massey(anss);
mint ans = linear_recurrence(anss, coef, N);
PRINT(ans);
}
void test() {}
template <auto init, auto main2, auto test>
struct Main
{
Main()
{
cauto CERR = [](string val, string color)
{
string s = "\033[" + color + "m" + val + "\033[m";
/* コードテストで確認する際にコメントアウトを外す
cerr << val;
//*/
};
CERR("\n[FAST_IO]\n\n", "32");
cout << fixed << setprecision(20);
init();
CERR("\n[SINGLE_TESTCASE]\n\n", "36");
main2();
}
};
Main<init, main2, test> main_dummy;
}
int main() {}
miscalc