結果
問題 |
No.2423 Merge Stones
|
ユーザー |
|
提出日時 | 2025-07-04 09:56:42 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,986 bytes |
コンパイル時間 | 4,006 ms |
コンパイル使用メモリ | 319,968 KB |
実行使用メモリ | 7,848 KB |
最終ジャッジ日時 | 2025-07-04 09:57:01 |
合計ジャッジ時間 | 17,717 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 53 WA * 19 |
ソースコード
// competitive-verifier: PROBLEM #pragma GCC optimize("Ofast,fast-math,unroll-all-loops") #include <bits/stdc++.h> #if !defined(ATCODER) && !defined(EVAL) #pragma GCC target("sse4.2,avx2,bmi2") #endif template <class T, class U> constexpr bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> constexpr bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr double EPS = 1e-7; constexpr double PI = 3.14159265358979323846; #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m) - 1; i >= int(n); --i) #define FORL(i, m, n) for (std::int64_t i = (m); i < std::int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); } constexpr void operator()() const {} } sonic; struct increment_impl { template <class T> const increment_impl &operator>>(std::vector<T> &v) const { for (auto &x : v) ++x; return *this; } } Inc; struct decrement_impl { template <class T> const decrement_impl &operator>>(std::vector<T> &v) const { for (auto &x : v) --x; return *this; } } Dec; struct sort_impl { template <class T> const sort_impl &operator>>(std::vector<T> &v) const { std::sort(v.begin(), v.end()); return *this; } } Sort; struct unique_impl { template <class T> const unique_impl &operator>>(std::vector<T> &v) const { std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); return *this; } } Uniq; using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) os << (it == v.begin() ? "" : " ") << *it; return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes\n" : "No\n"); } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES\n" : "NO\n"); } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } /// @brief フェニック木 /// @see http://hos.ac/slides/20140319_bit.pdf template <class T> struct fenwick_tree { fenwick_tree() : _size(), data() {} fenwick_tree(int n) : _size(n + 1), data(n + 1) {} template <class U> fenwick_tree(const std::vector<U> &v) : _size((int)v.size() + 1), data((int)v.size() + 1) { build(v); } T operator[](int i) const { return sum(i, i + 1); } T at(int k) const { return operator[](k); } T get(int k) const { return operator[](k); } template <class U> void build(const std::vector<U> &v) { for (int i = 0, n = v.size(); i < n; ++i) data[i + 1] = v[i]; for (int i = 1; i < _size; ++i) { if (i + (i & -i) < _size) data[i + (i & -i)] += data[i]; } } /// @brief v[k] = val void set(int k, T val) { add(k, val - at(k)); } /// @brief v[k] += val void add(int k, T val) { assert(0 <= k && k < _size - 1); for (++k; k < _size; k += k & -k) data[k] += val; } /// @brief chmax(v[k], val) bool chmax(int k, T val) { if (at(k) >= val) return false; set(k, val); return true; } /// @brief chmin(v[k], val) bool chmin(int k, T val) { if (at(k) <= val) return false; set(k, val); return true; } /// @brief v[0] + ... + v[n - 1] T all_prod() const { return prod(_size - 1); } /// @brief v[0] + ... + v[k - 1] T prod(int k) const { return sum(k); } /// @brief v[a] + ... + v[b - 1] T prod(int a, int b) const { return sum(a, b); } /// @brief v[0] + ... + v[n - 1] T all_sum() const { return sum(_size - 1); } /// @brief v[0] + ... + v[k - 1] T sum(int k) const { assert(0 <= k && k < _size); T res = 0; for (; k > 0; k -= k & -k) res += data[k]; return res; } /// @brief v[a] + ... + v[b - 1] T sum(int a, int b) const { assert(0 <= a && a <= b && b < _size); T res = T(); while (a != b) { if (a < b) { res += data[b]; b -= b & -b; } else { res -= data[a]; a -= a & -a; } } return res; } int lower_bound(T val) const { if (val <= 0) return 0; int k = 1; while (k < _size) k <<= 1; int res = 0; for (; k > 0; k >>= 1) { if (res + k < _size && data[res + k] < val) val -= data[res += k]; } return res; } private: int _size; std::vector<T> data; }; int main(void) { int n, k; cin >> n >> k; vector<int> a(n), c(n); cin >> a >> c; rep (i, n) { a.emplace_back(a[i]); c.emplace_back(c[i]); } vector dp(n * 2 + 1, vector(n * 2 + 1, 0l)); rep (i, n * 2) { dp[i][i + 1] = 1l << c[i]; } FOR (t, 2, n + 1) { rep (l, n * 2) { int r = l + t; if (r > n * 2) break; FOR (m, l + 1, r) { rep (s, k + 1) { dp[l][r] |= dp[l][m] & (dp[m][r] << s); dp[l][r] |= dp[l][m] & (dp[m][r] >> s); } } } } fenwick_tree<ll> ft(a); ll ans = *max_element(all(a)); rep (l, n * 2) { FOR (r, l + 1, n * 2 + 1) { if (dp[l][r]) chmax(ans, ft.sum(l, r)); } } co(ans); return 0; }