結果
問題 |
No.5022 XOR Printer
|
ユーザー |
![]() |
提出日時 | 2025-07-08 17:25:16 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,819 ms / 2,000 ms |
コード長 | 19,355 bytes |
コンパイル時間 | 3,145 ms |
コンパイル使用メモリ | 239,256 KB |
実行使用メモリ | 7,716 KB |
スコア | 5,226,579,668 |
最終ジャッジ日時 | 2025-07-26 12:33:18 |
合計ジャッジ時間 | 97,178 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
純コード判定しない問題か言語 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 50 |
ソースコード
#include <iostream> #include <vector> #include <tuple> #include <algorithm> #include <random> #include <limits> #include <cmath> #include <numeric> #include <optional> #include <iterator> #include <unordered_set> #include <chrono> using namespace std; // Random number generator with fixed seed static mt19937 rng(0); static uniform_real_distribution<double> uniDist(0.0, 1.0); // Constants constexpr int MAX_BIT = 20; constexpr int MAX_SEE_BIT = 8; constexpr int DEFAULT_TARGET_BIT = 19; constexpr double ANNEALING_DECAY = 0.99; constexpr double INITIAL_ACCEPT_PROB = 1.0; // Global variables int N, T, N2; vector<int> board; vector<int> BINARY_VALS; int BIT_MASK; //------------------------------------------------------------------------------ // Utility Functions //------------------------------------------------------------------------------ pair<int, int> to_2d(int pos) { return { pos / N, pos % N }; } int to_1d(int x, int y) { return x * N + y; } int manhattan_distance(int pos1, int pos2) { auto [x1, y1] = to_2d(pos1); auto [x2, y2] = to_2d(pos2); return abs(x1 - x2) + abs(y1 - y2); } vector<char> generate_move_commands(int start, int end) { vector<char> commands; auto [x1, y1] = to_2d(start); auto [x2, y2] = to_2d(end); int cx = x1; int cy = y1; // Vertical moves while (cx < x2) { commands.push_back('D'); ++cx; } while (cx > x2) { commands.push_back('U'); --cx; } // Horizontal moves while (cy < y2) { commands.push_back('R'); ++cy; } while (cy > y2) { commands.push_back('L'); --cy; } return commands; } void process_board( vector<int>& b, const vector<char>& commands, int& s, int& pos ) { for (char c : commands) { switch (c) { case 'W': b[pos] ^= s; break; case 'C': s ^= b[pos]; break; case 'D': pos += N; break; case 'U': pos -= N; break; case 'R': pos += 1; break; case 'L': pos -= 1; break; } } } void revert_board( vector<int>& b, char c, int& s, int& pos ) { switch (c) { case 'W': b[pos] ^= s; break; case 'C': s ^= b[pos]; break; case 'D': pos -= N; break; case 'U': pos += N; break; case 'R': pos -= 1; break; case 'L': pos += 1; break; } } vector<int> get_one_intermediate_positions_2d( int start_pos, int end_pos ) { auto [sx, sy] = to_2d(start_pos); auto [ex, ey] = to_2d(end_pos); if (sx > ex) swap(sx, ex); if (sy > ey) swap(sy, ey); vector<int> candidates; for (int x = sx; x <= ex; ++x) { for (int y = sy; y <= ey; ++y) { if (x != ex || y != ey) { candidates.push_back(to_1d(x, y)); } } } return candidates; } vector<pair<int, int>> get_two_intermediate_positions_1d( int start, int end ) { int left, right; if (start <= end) { left = start; right = end; } else { left = -start; right = -end; } vector<pair<int,int>> result; for (int m1 = left; m1 <= right; ++m1) { for (int m2 = m1; m2 <= right; ++m2) { result.emplace_back(abs(m1), abs(m2)); } } return result; } vector<pair<int, int>> get_two_intermediate_positions_2d( int start_pos, int end_pos ) { auto [sx, sy] = to_2d(start_pos); auto [ex, ey] = to_2d(end_pos); auto x_pairs = get_two_intermediate_positions_1d(sx, ex); auto y_pairs = get_two_intermediate_positions_1d(sy, ey); vector<pair<int,int>> candidates; for (auto& xp : x_pairs) { for (auto& yp : y_pairs) { int pos1 = to_1d(xp.first, yp.first); int pos2 = to_1d(xp.second, yp.second); if (pos1 != pos2 && pos2 != end_pos) { candidates.emplace_back(pos1, pos2); } } } return candidates; } bool is_valid_state(int state, int target_bit) { return (BINARY_VALS[target_bit] <= state && state < BINARY_VALS[target_bit + 1]); } //------------------------------------------------------------------------------ // RouteOptimizer: 2-opt hill climbing with simulated annealing //------------------------------------------------------------------------------ class RouteOptimizer { public: vector<int> generate_optimal_route( int start_pos, const vector<int>& brd, int target_bit ) { auto targets = find_target_positions(brd, target_bit); auto route = build_nearest_neighbor_route( start_pos, move(targets), target_bit ); return apply_2opt_optimization(move(route), target_bit); } private: vector<int> find_target_positions( const vector<int>& brd, int target_bit ) { vector<int> res; res.reserve(N2); for (int i = 0; i < N2; ++i) { if (((brd[i] >> target_bit) & 1) == 0) { res.push_back(i); } } return res; } vector<int> build_nearest_neighbor_route( int start_pos, vector<int> targets, int target_bit ) { vector<int> route = { start_pos }; int cur = start_pos; unordered_set<int> rem(targets.begin(), targets.end()); while (!rem.empty()) { int best = -1; int bd = numeric_limits<int>::max(); for (int t : rem) { int d = manhattan_distance(cur, t); if (d < bd) { bd = d; best = t; } } route.push_back(best); rem.erase(best); cur = best; } adjust_final_position(route, target_bit); return route; } void adjust_final_position( vector<int>& route, int target_bit ) { for (int i = (int)route.size() - 1; i >= 0; --i) { if (can_be_final_position( board[route[i]], target_bit )) { swap(route[i], route.back()); return; } } } vector<int> apply_2opt_optimization( vector<int> route, int target_bit ) { double acc = INITIAL_ACCEPT_PROB; int L = route.size(); while (true) { bool improved = false; vector<int> idx(L); iota(idx.begin(), idx.end(), 0); shuffle(idx.begin(), idx.end(), rng); for (int a = 1; a < L && !improved; ++a) { for (int b = a + 1; b <= L && !improved; ++b) { if (!is_valid_2opt_move(route, a, b, target_bit)) { continue; } int delta = calculate_2opt_improvement( route, a, b ); if (delta < 0 || (delta == 0 && uniDist(rng) < acc)) { reverse( route.begin() + a, route.begin() + b ); improved = true; } } } if (!improved) { break; } acc *= ANNEALING_DECAY; } return route; } bool is_valid_2opt_move( const vector<int>& route, int i, int j, int tb ) { if (j == (int)route.size() && !can_be_final_position( board[route[i]], tb )) { return false; } return true; } int calculate_2opt_improvement( const vector<int>& route, int i, int j ) { int L = route.size(); if (j == L) { return manhattan_distance(route[i - 1], route[j - 1]) - manhattan_distance(route[i - 1], route[i]); } return manhattan_distance(route[i - 1], route[j - 1]) + manhattan_distance(route[i], route[j]) - manhattan_distance(route[i - 1], route[i]) - manhattan_distance(route[j - 1], route[j]); } bool can_be_final_position( int cell_val, int tb ) { return (tb == DEFAULT_TARGET_BIT) || is_valid_state(cell_val ^ BIT_MASK, tb); } }; //------------------------------------------------------------------------------ // WriteCopyPlanner: Plans write and copy operations //------------------------------------------------------------------------------ class WriteCopyPlanner { public: WriteCopyPlanner(int tb) : target_bit(tb) , see_bit(min(tb, MAX_SEE_BIT)) {} vector<char> generate_execution_plan( const vector<int>& route, const vector<int>& brd, int init_state ) { int L = route.size(); int S = 1 << see_bit; // DP tables vector<vector<double>> dp( L - 1, vector<double>(S, numeric_limits<double>::infinity()) ); vector<vector<tuple<int,int,int>>> tr( L - 1, vector<tuple<int,int,int>>(S, { -1, -1, -1 }) ); vector<int> start_pos(S, -1); int sp = route[0]; // Initialize start states for (int p = 0; p < N2; ++p) { int xor_val = brd[p] ^ init_state; if (!is_valid_state(xor_val, target_bit)) continue; int st = (xor_val % (1 << target_bit)) >> (target_bit - see_bit); int dist = manhattan_distance(sp, p) + manhattan_distance(p, route[1]); if (dp[0][st] > dist) { dp[0][st] = dist; start_pos[st] = p; } } // Precompute board top bits vector<int> tops(N2); for (int i = 0; i < N2; ++i) { tops[i] = (brd[i] % (1 << target_bit)) >> (target_bit - see_bit); } // Fill DP table for (int i = 1; i < L - 1; ++i) { for (int st = 0; st < S; ++st) { if (dp[i - 1][st] == numeric_limits<double>::infinity()) { continue; } // Direct write { int val = tops[route[i]] ^ st; int score = [&] (int v) { int cnt = 0; for (int k = see_bit - 1; k >= 0; --k) { if (!((v >> k) & 1)) { return cnt; } ++cnt; } return cnt; }(val); double cost = dp[i - 1][st] - score; if (dp[i][st] > cost) { dp[i][st] = cost; tr[i][st] = { st, -1, -1 }; } } // Copy operations if (i > 1) { for (auto& pr : get_two_intermediate_positions_2d( route[i - 1], route[i] )) { auto [p1, p2] = pr; optional<int> ns; int xor1 = brd[p1] ^ BIT_MASK; int xor2 = brd[p2] ^ BIT_MASK; if (p1 == route[i - 1]) { if ( xor2 >= (1 << target_bit) || !is_valid_state( brd[p1] ^ brd[p2], target_bit ) ) { continue; } ns = tops[p1] ^ tops[p2]; } else { if ( xor1 >= (1 << target_bit) || xor2 >= (1 << target_bit) ) { continue; } ns = st ^ tops[p1] ^ tops[p2]; } int new_st = *ns; int val = tops[route[i]] ^ new_st; int score = [&] (int v) { int cnt = 0; for (int k = see_bit - 1; k >= 0; --k) { if (!((v >> k) & 1)) { return cnt; } ++cnt; } return cnt; }(val); double cost = dp[i - 1][st] + 2 - score; if (dp[i][new_st] > cost) { dp[i][new_st] = cost; tr[i][new_st] = { st, p1, p2 }; } } } } } // Reconstruct commands vector<char> cmds; int final_idx = L - 2; int best_st = min_element( dp[final_idx].begin(), dp[final_idx].end() ) - dp[final_idx].begin(); for (int i = final_idx; i >= 2; --i) { auto [prev_st, p1, p2] = tr[i][best_st]; cmds.push_back('W'); if (p1 < 0) { auto mv = generate_move_commands( route[i - 1], route[i] ); cmds.insert(cmds.end(), mv.begin(), mv.end()); } else { auto mv2 = generate_move_commands( p2, route[i] ); cmds.insert(cmds.end(), mv2.begin(), mv2.end()); cmds.push_back('C'); auto mv1 = generate_move_commands(p1, p2); cmds.insert(cmds.end(), mv1.begin(), mv1.end()); cmds.push_back('C'); auto mv0 = generate_move_commands( route[i - 1], p1 ); cmds.insert(cmds.end(), mv0.begin(), mv0.end()); } best_st = prev_st; } // Initial writes and copy cmds.push_back('W'); int init_pos = start_pos[best_st]; auto mv1_start = generate_move_commands( init_pos, route[1] ); cmds.insert(cmds.end(), mv1_start.begin(), mv1_start.end()); cmds.push_back('C'); auto mv0_start = generate_move_commands( route[0], init_pos ); cmds.insert(cmds.end(), mv0_start.begin(), mv0_start.end()); reverse(cmds.begin(), cmds.end()); // Final movement auto mv_final = generate_move_commands( route[L - 2], route[L - 1] ); cmds.insert(cmds.end(), mv_final.begin(), mv_final.end()); cmds.push_back( (target_bit == DEFAULT_TARGET_BIT) ? 'W' : 'C' ); return cmds; } private: int target_bit; int see_bit; }; //------------------------------------------------------------------------------ // Postprocess and Main Solver //------------------------------------------------------------------------------ void postprocess_board( vector<int>& b, vector<char>& cmds, int& s, int& pos ) { while (true) { int min_pos = min_element(b.begin(), b.end()) - b.begin(); int steps = cmds.size() + manhattan_distance(pos, min_pos) + 4; if (steps > T) { char last_cmd = cmds.back(); cmds.pop_back(); revert_board(b, last_cmd, s, pos); continue; } int best_s = numeric_limits<int>::min(); int best_v = -1; for (int v : get_one_intermediate_positions_2d(pos, min_pos)) { int s2 = b[v] ^ s; if (s2 > best_s) { best_s = s2; best_v = v; } } if (best_s < 1000000) { char last_cmd = cmds.back(); cmds.pop_back(); revert_board(b, last_cmd, s, pos); continue; } // Add new sequence of commands auto mv1 = generate_move_commands(pos, best_v); cmds.insert(cmds.end(), mv1.begin(), mv1.end()); cmds.push_back('C'); auto mv2 = generate_move_commands(best_v, min_pos); cmds.insert(cmds.end(), mv2.begin(), mv2.end()); cmds.push_back('W'); cmds.push_back('C'); cmds.push_back('W'); vector<char> recent( cmds.end() - (mv1.size() + 1 + mv2.size() + 3), cmds.end() ); process_board(b, recent, s, pos); return; } } vector<char> solve_puzzle() { int pos = to_1d(0, 0); int s = 0; vector<char> cmds; for (int tb = MAX_BIT - 1; tb >= 0; --tb) { RouteOptimizer ro; auto route = ro.generate_optimal_route(pos, board, tb); WriteCopyPlanner wcp(tb); auto exec_cmds = wcp.generate_execution_plan(route, board, s); process_board(board, exec_cmds, s, pos); cmds.insert(cmds.end(), exec_cmds.begin(), exec_cmds.end()); if ((int)cmds.size() > T) break; } postprocess_board(board, cmds, s, pos); return cmds; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cin >> N >> T; N2 = N * N; board.resize(N2); for (int i = 0; i < N2; ++i) { cin >> board[i]; } BINARY_VALS.resize(MAX_BIT + 1); for (int i = 0; i <= MAX_BIT; ++i) { BINARY_VALS[i] = 1 << i; } BIT_MASK = (1 << MAX_BIT) - 1; // 時間いっぱいsolve_puzzleを回して最も良いものを出力 vector<char> best_cmds; int best_score = 0; auto start_time = chrono::high_resolution_clock::now(); auto time_limit = chrono::milliseconds(1800); // 1.8秒で制限 while (true) { auto current_time = chrono::high_resolution_clock::now(); if (current_time - start_time > time_limit) break; // ボードをリセット vector<int> original_board = board; auto cmds = solve_puzzle(); int score = accumulate(board.begin(), board.end(), 0); if (score > best_score) { best_score = score; best_cmds = cmds; } // ボードを元に戻す board = original_board; } // 最良の結果を出力 for (int i = 0; i < T && i < (int)best_cmds.size(); ++i) { cout << best_cmds[i] << "\n"; } return 0; }