結果
| 問題 |
No.1879 How many matchings?
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-09 02:03:59 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 23,343 bytes |
| コンパイル時間 | 5,919 ms |
| コンパイル使用メモリ | 282,204 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2025-07-09 02:04:07 |
| 合計ジャッジ時間 | 7,530 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 WA * 6 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint998244353;
using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【マッチングの列挙(大きさ指定)】O(√perm(n, 2k) k)
/*
* 無向グラフ g の大きさ k のマッチング全てのリストを返す.
* マッチングは n 個の頂点対のリストとして表す.
*/
vector<vector<pii>> enumerate_matching(const Graph& g, int k) {
// verify : https://atcoder.jp/contests/arc095/tasks/arc095_c
int n = sz(g);
vector<vector<pii>> mcs;
// used[v] : 頂点 v をマッチングに使用しているか
int used = 0;
// mc : 作成途中のマッチング
vector<pii> mc;
// 頂点 s 以降のマッチングを見つける
function<void(int)> rf = [&](int s) {
// マッチングの大きさが k になったら結果を格納して打ち切る.
if (sz(mc) == k) {
mcs.push_back(mc);
return;
}
// 残りの頂点を全て使ってもマッチングの大きさが k に満たない場合は打ち切る.
if (sz(mc) + (n - s - popcount(used >> s)) / 2 < k) return;
// 頂点 s を新たなマッチングに使用しない場合
rf(s + 1);
// 頂点 s が使用済だった場合はこれで終わり.
if (used & (1 << s)) return;
// 頂点 s を j 番目のマッチングの片方に選ぶ.
used += (1 << s);
mc.emplace_back(s, -1);
// t : 頂点 s とマッチさせる頂点
repe(t, g[s]) {
// 頂点 t が走査済または使用済だった場合は選べない.
if (t < s || used & (1 << t)) continue;
// 頂点 t を頂点 s とマッチさせる.
used += (1 << t);
mc.back().second = t;
// 次の頂点に進む.
rf(s + 1);
// 頂点 t を未使用に戻しておく.
used -= (1 << t);
}
// 頂点 s を未使用に戻しておく.
mc.pop_back();
used -= (1 << s);
return;
};
rf(0);
return mcs;
}
mint naive(int n) {
Graph g(n);
rep(i, n) {
repi(j, max(0, i - 2), min(n - 1, i + 2)) {
g[i].push_back(j);
}
}
return sz(enumerate_matching(g, n / 2));
}
//【形式的冪級数】
/*
* MFPS() : O(1)
* 零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
* 定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
* n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
* f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
* 畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1) f + g : O(n)
* f - c : O(1) c - f, f - g, -f : O(n)
* c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n |g|)
* f / c : O(n) f / g : O(n log n) f / g_sp : O(n |g|)
* 形式的冪級数としての和,差,積,商の結果を返す.
* g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
* 制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
* 1 / f mod z^d を返す.
* 制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
* 多項式としての f を g で割った商,余り,商と余りの組を返す.
* 制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
* 多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
* 単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
* 多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
* mod z^d をとる.
*
* f.resize() : O(n)
* 不要な高次の項を削る.
*
* f >> d, f << d : O(n)
* 係数列を d だけ右[左]シフトした多項式を返す.
* (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* f.push_back(c) : O(1)
* 最高次の係数として c を追加する.
*/
struct MFPS {
using SMFPS = vector<pim>;
int n; // 係数の個数(次数 + 1)
vm c; // 係数列
inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数
// コンストラクタ(0,定数,係数列で初期化)
MFPS() : n(0) {}
MFPS(mint c0) : n(1), c({ c0 }) {}
MFPS(int c0) : n(1), c({ mint(c0) }) {}
MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }
// 代入
MFPS(const MFPS& f) = default;
MFPS& operator=(const MFPS& f) = default;
MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }
void push_back(mint cn) { c.emplace_back(cn); ++n; }
void pop_back() { c.pop_back(); --n; }
[[nodiscard]] mint back() { return c.back(); }
// 比較
[[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; }
[[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; }
// アクセス
inline mint const& operator[](int i) const { return c[i]; }
inline mint& operator[](int i) { return c[i]; }
// 次数
[[nodiscard]] int deg() const { return n - 1; }
[[nodiscard]] int size() const { return n; }
static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
CONV = CONV_;
}
// 加算
MFPS& operator+=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
else {
rep(i, n) c[i] += g.c[i];
repi(i, n, g.n - 1) c.push_back(g.c[i]);
n = g.n;
}
return *this;
}
[[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }
// 定数加算
MFPS& operator+=(const mint& sc) {
if (n == 0) { n = 1; c = { sc }; }
else { c[0] += sc; }
return *this;
}
[[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
[[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
[[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
[[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }
// 減算
MFPS& operator-=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
else {
rep(i, n) c[i] -= g.c[i];
repi(i, n, g.n - 1) c.push_back(-g.c[i]);
n = g.n;
}
return *this;
}
[[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }
// 定数減算
MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
[[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
[[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
[[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
[[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }
// 加法逆元
[[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; }
// 定数倍
MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
[[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
[[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
[[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
[[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }
// 右からの定数除算
MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
[[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
[[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }
// 積
MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
[[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }
// 除算
[[nodiscard]] MFPS inv(int d) const {
// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series
//【方法】
// 1 / f mod z^d を求めることは,
// f g = 1 (mod z^d)
// なる g を求めることである.
// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
//
// d = 1 のときについては
// g = 1 / f[0] (mod z^1)
// である.
//
// 次に,
// g = h (mod z^k)
// が求まっているとして
// g mod z^(2 k)
// を求める.最初の式を変形していくことで
// g - h = 0 (mod z^k)
// ⇒ (g - h)^2 = 0 (mod z^(2 k))
// ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
// ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
// ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k)) (f g = 1 (mod z^d) より)
// ⇔ g = (2 - f h) h (mod z^(2 k))
// を得る.
//
// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.
Assert(!c.empty());
Assert(c[0] != 0);
MFPS g(c[0].inv());
for (int k = 1; k < d; k <<= 1) {
int len = max(min(2 * k, d), 1);
MFPS tmp(0, len);
rep(i, min(len, n)) tmp[i] = -c[i]; // -f
tmp *= g; // -f h
tmp.resize(len);
tmp[0] += 2; // 2 - f h
g *= tmp; // (2 - f h) h
g.resize(len);
}
return g;
}
MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
[[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }
// 余り付き除算
[[nodiscard]] MFPS quotient(const MFPS& g) const {
// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
//【方法】
// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
// f の次数は n-1, g の次数は m-1 とする.(n ≧ m)
// 従って q の次数は n-m,r の次数は m-2 となる.
//
// f^R で f の係数列を逆順にした多項式を表す.すなわち
// f^R(x) := f(1/x) x^(n-1)
// である.他の多項式も同様とする.
//
// 最初の式で x → 1/x と置き換えると,
// f(1/x) = g(1/x) q(1/x) + r(1/x)
// ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
// ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
// ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
// ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
// ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1))
// を得る.
//
// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
// q の次数は n-m であったから,q 自身を正しく求めることができた.
if (n < g.n) return MFPS();
return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
}
[[nodiscard]] MFPS reminder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
return (*this - this->quotient(g) * g).resize();
}
[[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
pair<MFPS, MFPS> res;
res.first = this->quotient(g);
res.second = (*this - res.first * g).resize();
return res;
}
// スパース積
MFPS& operator*=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
mint g0 = 0;
if (it0->first == 0) {
g0 = it0->second;
it0++;
}
// 後ろからインライン配る DP
repir(i, n - 1, 0) {
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] += c[i] * gj;
}
// 定数項は最後に配るか消去しないといけない.
c[i] *= g0;
}
return *this;
}
[[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }
// スパース商
MFPS& operator/=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
Assert(it0->first == 0 && it0->second != 0);
mint g0_inv = it0->second.inv();
it0++;
// 前からインライン配る DP(後ろに累積効果あり)
rep(i, n) {
// 定数項は最初に配らないといけない.
c[i] *= g0_inv;
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] -= c[i] * gj;
}
}
return *this;
}
[[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }
// 係数反転
[[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }
// 単項式
[[nodiscard]] static MFPS monomial(int d, mint coef = 1) {
MFPS mono(0, d + 1);
mono[d] = coef;
return mono;
}
// 不要な高次項の除去
MFPS& resize() {
// 最高次の係数が非 0 になるまで削る.
while (n > 0 && c[n - 1] == 0) {
c.pop_back();
n--;
}
return *this;
}
// x^d 以上の項を除去する.
MFPS& resize(int d) {
n = d;
c.resize(d);
return *this;
}
// 不定元への代入
[[nodiscard]] mint assign(const mint& x) const {
mint val = 0;
repir(i, n - 1, 0) val = val * x + c[i];
return val;
}
// 係数のシフト
MFPS& operator>>=(int d) {
n += d;
c.insert(c.begin(), d, 0);
return *this;
}
MFPS& operator<<=(int d) {
n -= d;
if (n <= 0) { c.clear(); n = 0; }
else c.erase(c.begin(), c.begin() + d);
return *this;
}
[[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
[[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const MFPS& f) {
if (f.n == 0) os << 0;
else {
rep(i, f.n) {
os << f[i] << "z^" << i;
if (i < f.n - 1) os << " + ";
}
}
return os;
}
#endif
};
//【畳込み(素朴)】O(n m)
/*
* a[0..n) と b[0..m) を畳み込んだ数列 c[0..n+m-1) を返す.
* すなわち c[k] = Σ_(i+j=k) a[i] b[j] である.
*/
template <class T>
vector<T> naive_convolution(const vector<T>& a, const vector<T>& b) {
// verify : https://atcoder.jp/contests/abc214/tasks/abc214_g
int n = sz(a), m = sz(b);
if (n == 0 || m == 0) return vector<T>();
// c[k] = Σ_(i+j=k) a[i] b[j]
vector<T> c(n + m - 1);
if (n < m) {
rep(i, n) rep(j, m) c[i + j] += a[i] * b[j];
}
else {
rep(j, m) rep(i, n) c[i + j] += a[i] * b[j];
}
return c;
}
//【展開係数】O(n log n log N)
/*
* [z^N] f(z)/g(z) を返す.
*
* 制約 : deg f < deg g, g[0] ≠ 0
*/
mint bostan_mori(MFPS f, MFPS g, ll N) {
// 参考 : http://q.c.titech.ac.jp/docs/progs/polynomial_division.html
// verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
//【方法】
// 分母分子に g(-z) を掛けることにより
// f(z) / g(z) = f(z) g(-z) / g(z) g(-z)
// を得る.ここで g(z) g(-z) は偶多項式なので
// g(z) g(-z) = e(z^2)
// と表すことができる.
//
// 分子について
// f(z) g(-z) = E(z^2) + z O(z^2)
// というように偶多項式部分と奇多項式部分に分けると,N が偶数のときは
// [z^N] f(z) g(-z) / g(z) g(-z)
// = [z^N] E(z^2) / e(z^2)
// = [z^(N/2)] E(z) / e(z)
// となり,N が奇数のときは
// [z^N] f(z) g(-z) / g(z) g(-z)
// = [z^N] z O(z^2) / e(z^2)
// = [z^((N-1)/2)] O(z) / e(z)
// となる.
//
// これを繰り返せば N を半分ずつに減らしていくことができる.
Assert(g.n >= 1 && g[0] != 0);
// f(z) = 0 のときは 0 を返す.
if (f.n == 0) return 0;
while (N > 0) {
// f2(z) = f(z) g(-z), g2(z) = g(z) g(-z) を求める.
MFPS f2, g2 = g;
rep(i, g2.n) if (i & 1) g2[i] *= -1;
f2 = f * g2;
g2 *= g;
// f3(z) = E(z) or O(z), g3(z) = e(z) を求める.
f.c.clear(); g.c.clear();
if (N & 1) rep(i, min<ll>(f2.n / 2, N / 2 + 1)) f.c.push_back(f2[2 * i + 1]);
else rep(i, min<ll>((f2.n + 1) / 2, N / 2 + 1)) f.c.push_back(f2[2 * i]);
f.n = sz(f.c);
rep(i, min<ll>((g2.n + 1) / 2, N / 2 + 1)) g.c.push_back(g2[2 * i]);
g.n = sz(g.c);
// N を半分にして次のステップに進む.
N /= 2;
}
// N = 0 になったら定数項を返す.
return f[0] / g[0];
}
//【線形漸化式】O(n log n log N)
/*
* 初項 a[0..n) と漸化式 a[i] = Σj∈[0..n) c[j] a[i-1-j] で定義される
* 数列 a について,a[N] の値を返す.
*
* 利用:【展開係数】
*/
mint linearly_recurrent_sequence(const vm& a, const vm& c, ll N) {
// verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
int n = sz(c);
if (n == 0) return 0;
MFPS A(a), C(c);
MFPS Dnm = 1 - (C >> 1);
MFPS Num = (Dnm * A).resize(n);
return bostan_mori(Num, Dnm, N);
}
//【線形漸化式の発見】O(n^2)
/*
* 与えられた数列 a[0..n) に対し,以下の等式を満たす c[0..m) で m を最小とするものを返す:
* a[i] = Σj∈[0..m) c[j] a[i-1-j] (∀i∈[m..n))
*
* 制約 : mint::mod は素数
*/
vm berlekamp_massey(const vm& a) {
// 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
// verify : https://judge.yosupo.jp/problem/find_linear_recurrence
vm S(a), C{ 1 }, B{ 1 };
int N = sz(a), m = 1; mint b = 1;
rep(n, N) {
mint d = 0;
rep(i, sz(C)) d += C[i] * S[n - i];
if (d == 0) {
m++;
}
else if (2 * (sz(C) - 1) <= n) {
vm T(C);
mint coef = d * b.inv();
C.resize(max(sz(C), sz(B) + m));
rep(j, sz(B)) C[j + m] -= coef * B[j];
B = T;
b = d;
m = 1;
}
else {
mint coef = d * b.inv();
C.resize(max(sz(C), sz(B) + m));
rep(j, sz(B)) C[j + m] -= coef * B[j];
m++;
}
}
C.erase(C.begin());
rep(i, sz(C)) C[i] *= -1;
return C;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
vm a;
repi(n, 1, 40) a.push_back(naive(n));
dump(a);
MFPS::set_conv(naive_convolution);
auto c = berlekamp_massey(a);
dump(c);
dump(sz(a), sz(c));
ll n;
cin >> n;
EXIT(linearly_recurrent_sequence(a, c, n - 1));
}