結果

問題 No.3306 Life is Easy?
ユーザー dyktr_06
提出日時 2025-07-09 06:33:54
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 4,632 bytes
コンパイル時間 2,515 ms
コンパイル使用メモリ 209,240 KB
実行使用メモリ 16,208 KB
最終ジャッジ日時 2025-07-09 06:34:02
合計ジャッジ時間 7,916 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 3 TLE * 1 -- * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

// https://ei1333.github.io/library/graph/flow/hungarian.hpp
template <class T>
struct Matrix {
  vector<vector<T> > A;

  Matrix() {}

  Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}

  Matrix(size_t n) : A(n, vector<T>(n, 0)) {};

  size_t size() const {
    if (A.empty()) return 0;
    assert(A.size() == A[0].size());
    return A.size();
  }

  size_t height() const { return (A.size()); }

  size_t width() const { return (A[0].size()); }

  inline const vector<T> &operator[](int k) const { return (A.at(k)); }

  inline vector<T> &operator[](int k) { return (A.at(k)); }

  static Matrix I(size_t n) {
    Matrix mat(n);
    for (int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    size_t n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector<vector<T> > C(n, vector<T>(m, 0));
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++)
        for (int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while (k > 0) {
      if (k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

  Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

  Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

  Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    size_t n = p.height(), m = p.width();
    for (int i = 0; i < n; i++) {
      os << "[";
      for (int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }

  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for (int i = 0; i < width(); i++) {
      int idx = -1;
      for (int j = i; j < width(); j++) {
        if (B[j][i] != 0) idx = j;
      }
      if (idx == -1) return (0);
      if (i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for (int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for (int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for (int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

template <typename T>
pair<T, vector<int> > hungarian(Matrix<T> &A) {
  const T infty = numeric_limits<T>::max();
  const int N = (int)A.height();
  const int M = (int)A.width();
  vector<int> P(M), way(M);
  vector<T> U(N, 0), V(M, 0), minV;
  vector<bool> used;

  for (int i = 1; i < N; i++) {
    P[0] = i;
    minV.assign(M, infty);
    used.assign(M, false);
    int j0 = 0;
    while (P[j0] != 0) {
      int i0 = P[j0], j1 = 0;
      used[j0] = true;
      T delta = infty;
      for (int j = 1; j < M; j++) {
        if (used[j]) continue;
        T curr = A[i0][j] - U[i0] - V[j];
        if (curr < minV[j]) minV[j] = curr, way[j] = j0;
        if (minV[j] < delta) delta = minV[j], j1 = j;
      }
      for (int j = 0; j < M; j++) {
        if (used[j])
          U[P[j]] += delta, V[j] -= delta;
        else
          minV[j] -= delta;
      }
      j0 = j1;
    }
    do {
      P[j0] = P[way[j0]];
      j0 = way[j0];
    } while (j0 != 0);
  }
  return {-V[0], P};
}

int main(){
    int n, m; cin >> n >> m;
    vector<vector<long long>> a(n, vector<long long>(m));
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < m; j++) {
            cin >> a[i][j];
        }
    }

    int d = n / 2;
    Matrix<long long> w(d + 1, d + 1);
    for(int i = 0; i < d; i++){
        for(int j = 0; j < d; j++){
            for(int k = 0; k < m; k++){
                w[i + 1][j + 1] = max(w[i + 1][j + 1], a[j + d + n % 2][k] - a[i][k]);
            }
            w[i + 1][j + 1] *= -1;
        }
    }

    auto res = hungarian(w);
    cout << -res.first << endl;
}
0