結果
問題 |
No.3306 Life is Easy?
|
ユーザー |
|
提出日時 | 2025-07-09 06:33:54 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,632 bytes |
コンパイル時間 | 2,515 ms |
コンパイル使用メモリ | 209,240 KB |
実行使用メモリ | 16,208 KB |
最終ジャッジ日時 | 2025-07-09 06:34:02 |
合計ジャッジ時間 | 7,916 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 3 TLE * 1 -- * 31 |
ソースコード
#include <bits/stdc++.h> using namespace std; // https://ei1333.github.io/library/graph/flow/hungarian.hpp template <class T> struct Matrix { vector<vector<T> > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)) {}; size_t size() const { if (A.empty()) return 0; assert(A.size() == A[0].size()); return A.size(); } size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T> &operator[](int k) const { return (A.at(k)); } inline vector<T> &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T> > C(n, vector<T>(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; template <typename T> pair<T, vector<int> > hungarian(Matrix<T> &A) { const T infty = numeric_limits<T>::max(); const int N = (int)A.height(); const int M = (int)A.width(); vector<int> P(M), way(M); vector<T> U(N, 0), V(M, 0), minV; vector<bool> used; for (int i = 1; i < N; i++) { P[0] = i; minV.assign(M, infty); used.assign(M, false); int j0 = 0; while (P[j0] != 0) { int i0 = P[j0], j1 = 0; used[j0] = true; T delta = infty; for (int j = 1; j < M; j++) { if (used[j]) continue; T curr = A[i0][j] - U[i0] - V[j]; if (curr < minV[j]) minV[j] = curr, way[j] = j0; if (minV[j] < delta) delta = minV[j], j1 = j; } for (int j = 0; j < M; j++) { if (used[j]) U[P[j]] += delta, V[j] -= delta; else minV[j] -= delta; } j0 = j1; } do { P[j0] = P[way[j0]]; j0 = way[j0]; } while (j0 != 0); } return {-V[0], P}; } int main(){ int n, m; cin >> n >> m; vector<vector<long long>> a(n, vector<long long>(m)); for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { cin >> a[i][j]; } } int d = n / 2; Matrix<long long> w(d + 1, d + 1); for(int i = 0; i < d; i++){ for(int j = 0; j < d; j++){ for(int k = 0; k < m; k++){ w[i + 1][j + 1] = max(w[i + 1][j + 1], a[j + d + n % 2][k] - a[i][k]); } w[i + 1][j + 1] *= -1; } } auto res = hungarian(w); cout << -res.first << endl; }