結果
| 問題 | No.1416 ショッピングモール | 
| コンテスト | |
| ユーザー |  norioc | 
| 提出日時 | 2025-07-11 01:26:24 | 
| 言語 | Scheme (Gauche-0.9.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 403 ms / 1,000 ms | 
| コード長 | 3,915 bytes | 
| コンパイル時間 | 289 ms | 
| コンパイル使用メモリ | 6,528 KB | 
| 実行使用メモリ | 44,672 KB | 
| 最終ジャッジ日時 | 2025-07-11 01:26:32 | 
| 合計ジャッジ時間 | 6,969 ms | 
| ジャッジサーバーID (参考情報) | judge4 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 21 | 
ソースコード
(use srfi.13)  ; string
(use srfi.42)  ; list-ec
(use srfi.197) ; chain
(use gauche.collection)
(use gauche.dictionary)
(use gauche.generator)
(use gauche.sequence)
(use scheme.list)
(use scheme.set)
(use util.combinations)
(use util.match)
(define input read-line)
(define (ii)
  (string->number (read-line)))
(define (li)
  (let ((s (read-line)))
    (map string->number (string-split s " "))))
(define (prn . args)
  (for-each-with-index (lambda (i x)
                         (when (> i 0)
                           (display " "))
                         (display x))
                       args)
  (newline))
(define prn* (pa$ apply prn))
(define int string->number)
(define str x->string)
(define-method min ((xs <sequence>))
  (fold min (~ xs 0) xs))
(define-method max ((xs <sequence>))
  (fold max (~ xs 0) xs))
(define (minmax . xs)
  (values->list (apply min&max xs)))
(define-method minmax ((xs <sequence>))
  (values->list (apply min&max xs)))
(define (sum xs)
  (fold + 0 xs))
(define (divmod a b)
  (values->list (div-and-mod a b)))
(define (1+ n) (+ n 1))
(define (1- n) (- n 1))
(define (!= a b) (not (= a b)))
(define (midpoint a b) (div (+ a b) 2))
(define pow
  (case-lambda
   ((a b) (expt a b))
   ((a b m) (expt-mod a b m))))
(define gcd* (apply$ gcd))
(define isqrt exact-integer-sqrt)
(define ++ string-append)
(define zip (map$ list))
(define all every)
(define (pairwise xs)
  (zip xs (cdr xs)))
(define (comb n k)
  (if (or (< k 0) (> k n))
      0
      (let loop ((i 0)
                 (x 1))
        (if (= i k)
            x
            (loop (1+ i) (div (* x (- n i)) (1+ i)))))))
(define (make-dict)
  (make-hash-table equal-comparator))
(define-method frequencies ((xs <sequence>))
  (rlet1 dict (make-dict)
    (for-each (^x (dict-update! dict x 1+ 0))
              xs)))
(define (yn b)
  (prn (if b "Yes" "No")))
(define-macro (input! bindings . body)
  (let loop ((bs (reverse bindings))
             (res '()))
    (if (null? bs)
        `(let*-values ,res
           ,@body)
        (cond
         ((symbol? (car bs))
          (loop (cdr bs)
                (cons `((,(car bs)) (values (ii)))
                      res)))
         ((list? (car bs))
          (loop (cdr bs)
                (cons `(,(car bs) (apply values (li)))
                      res)))
         (else
          'error)))))
(define mlet match-let)
(define mlet* match-let*)
(define mlet1 match-let1)
(define-macro (mfn pat . body)
  (let ((arg (gensym)))
    `(lambda (,arg)
       (mlet1 ,pat ,arg
         ,@body))))
(define-syntax count-ec
  (syntax-rules ()
    ((_ qualifiers ...)
     (sum-ec qualifiers ... 1))))
(define-method len ((xs <list>))
  (length xs))
(define-method len ((s <string>))
  (string-length s))
(define-method len ((vs <vector>))
  (vector-length vs))
(define (accum xs)
  (define (proc a b)
    (let1 t (+ a b)
      (values t t)))
  (map-accum proc 0 xs))
(define (digits n)
  (map digit->integer (str n)))
(define (digits->int ds)
  (fold-left (^(a b) (+ (* 10 a) b)) 0 ds))
(define (-> x . fns)
  (call-with-values (^() (values x))
    (apply compose (reverse fns))))
(define (rep n thunk)
  (list-tabulate n (^i (thunk))))
(define (zip-longest . args)
  (let* ((n (apply max (map length args)))
         (xxs (map (^(xs)
                     (append xs (make-list (- n (length xs)) #f)))
                   args)))
    (map (pa$ delete #f)
         (apply zip xxs))))
(define (set-from xs)
  (apply set eqv-comparator xs))
(define (difference xs ys)
  (let ((excludes (set-from ys)))
    (filter (^x (not (set-contains? excludes x))) xs)))
(let* ((N (ii))
       (A (li)))
  (->
   (let loop ((i 0)
              (xs (sort A >))
              (res 0))
     (if (null? xs)
         res
         (let ((k (pow 2 i)))
           (loop (1+ i)
                 (drop* xs k)
                 (+ res (* i (sum (take* xs k))))))))
   prn))
            
            
            
        