結果
| 問題 |
No.3201 Corporate Synergy
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2025-07-11 22:39:45 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1 ms / 2,000 ms |
| コード長 | 14,228 bytes |
| コンパイル時間 | 10,235 ms |
| コンパイル使用メモリ | 400,016 KB |
| 実行使用メモリ | 7,716 KB |
| 最終ジャッジ日時 | 2025-09-01 23:37:06 |
| 合計ジャッジ時間 | 11,738 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 20 |
コンパイルメッセージ
warning: methods `reserve`, `size`, `empty`, and `front` are never used
--> src/main.rs:71:19
|
70 | impl<T> SimpleQueue<T> {
| ---------------------- methods in this implementation
71 | pub(crate) fn reserve(&mut self, n: usize) {
| ^^^^^^^
...
77 | pub(crate) fn size(&self) -> usize {
| ^^^^
...
81 | pub(crate) fn empty(&self) -> bool {
| ^^^^^
...
90 | pub(crate) fn front(&self) -> Option<&T> {
| ^^^^^
|
= note: `#[warn(dead_code)]` on by default
warning: field `flow_limit` is never read
--> src/main.rs:374:5
|
370 | struct FlowCalculator<'a, Cap> {
| -------------- field in this struct
...
374 | flow_limit: Cap,
| ^^^^^^^^^^
ソースコード
pub trait SortD{ fn sort_d(&mut self); }
impl<T: Ord> SortD for Vec<T>{ fn sort_d(&mut self) {
self.sort_by(|u, v| v.cmp(&u));
} }
pub trait Mx{fn max(&self, rhs: Self)->Self;}
impl Mx for f64{ fn max(&self, rhs: Self)->Self{if *self < rhs{ rhs } else { *self } }}
pub trait Mi{ fn min(&self, rhs: Self)->Self; }
impl Mi for f64{ fn min(&self, rhs: Self)->Self{ if *self < rhs{ rhs } else { *self } } }
pub fn chmax<T: PartialOrd+Clone>(a: &mut T, b: &T){ if *a < *b{ *a = b.clone(); } }
pub fn chmin<T: PartialOrd+Clone>(a: &mut T, b: &T){ if *a > *b{ *a = b.clone(); } }
pub fn gcd(mut a: i64, mut b: i64)->i64{ if b==0{return a;}(a,b)=(a.abs(),b.abs());while b!=0{ let c = a;a = b;b = c%b; }a }
pub fn factorial_i64(n: usize)->(Vec<i64>, Vec<i64>){ let mut res = vec![1; n+1];let mut inv = vec![1; n+1];for i in 0..n{ res[i+1] = (res[i]*(i+1)as i64)%MOD; }inv[n] = mod_inverse(res[n], MOD);for i in (0..n).rev(){ inv[i] = inv[i+1]*(i+1) as i64%MOD; }(res, inv) }
pub fn floor(a:i64, b:i64)->i64{let res=(a%b+b)%b;(a-res)/b}
pub fn extended_gcd(a:i64,b:i64)->(i64,i64,i64)
{if b==0{(a,1,0)}else{let(g,x,y)=extended_gcd(b,a%b);(g,y,x-floor(a,b)*y)}}
pub fn mod_inverse(a:i64,m:i64)->i64{let(_,x,_) =extended_gcd(a,m);(x%m+m)%m}
pub fn comb(a: i64, b: i64, f: &Vec<(i64, i64)>)->i64{
if a<b{return 0;}else if b==0 || a==b{ return 1; }
else{let x=f[a as usize].0;
let y=f[(a-b) as usize].1;let z=f[b as usize].1;return((x*y)%MOD)*z%MOD;}}
pub fn factorial(x: i64)->Vec<(i64, i64)>{
let mut f=vec![(1i64,1i64),(1, 1)];let mut z = 1i64;
let mut inv = vec![0; x as usize+10];inv[1] = 1;
for i in 2..x+1{z=(z*i)%MOD;
let w=(MOD-inv[(MOD%i)as usize]*(MOD/i)%MOD)%MOD;
inv[i as usize] = w;
f.push((z, (f[i as usize-1].1*w)%MOD));}return f;}
pub fn fast_mod_pow(x: i64,p: usize, m: i64)->i64{
let mut res=1;let mut t=x;let mut z=p;while z > 0{
if z%2==1{res = (res*t)%m;}t = (t*t)%m;z /= 2; }res}
#[allow(unused_imports)]
use std::{
convert::{Infallible, TryFrom, TryInto as _}, fmt::{self, Debug, Display, Formatter,},
fs::{File}, hash::{Hash, Hasher}, iter::{Product, Sum}, marker::PhantomData,
ops::{Add, AddAssign, Sub, SubAssign, Div, DivAssign, Mul, MulAssign, Neg, RangeBounds},
str::FromStr, sync::{atomic::{self, AtomicU32, AtomicU64}, Once},
collections::{*, btree_set::Range, btree_map::Range as BTreeRange}, mem::{swap},
cmp::{self, Reverse, Ordering, Eq, PartialEq, PartialOrd},
thread::LocalKey, f64::consts::PI, time::Instant, cell::RefCell,
io::{self, stdin, Read, read_to_string, BufWriter, BufReader, stdout, Write},
};
#[allow(unused_imports)]
use proconio::{input, input_interactive, marker::{*}};
#[allow(unused_imports)]
//use rand::{thread_rng, Rng, seq::SliceRandom, prelude::*};
#[allow(unused_imports)]
//use itertools::Itertools;
#[allow(unused_imports)]
//use ordered_float::OrderedFloat;
#[allow(unused_imports)]
//use ac_library::{*, ModInt998244353 as mint};
#[allow(dead_code)]
//type MI = StaticModInt<Mod998244353>;pub fn factorial_mint(n: usize)->(Vec<MI>, Vec<MI>){ let mut res = vec![mint::new(1); n+1];let mut inv = vec![mint::new(1); n+1];for i in 0..n{res[i+1] = res[i]*(i+1);}inv[n] = mint::new(1)/res[n];for i in (0..n).rev(){inv[i] = inv[i+1]*(i+1);}(res, inv)}
#[allow(dead_code)]
const INF: i64 = 1<<60;
#[allow(dead_code)]
const MOD: i64 = 998244353;
#[allow(dead_code)]
const D: [(usize, usize); 4] = [(1, 0), (0, 1), (!0, 0), (0, !0)];
#[allow(dead_code)]
const D2: [(usize, usize); 8] = [(1, 0), (1, 1), (0, 1), (!0, 1), (!0, 0), (!0, !0), (0, !0), (1, !0)];
#[derive(Default)]
pub(crate) struct SimpleQueue<T> {
payload: Vec<T>,
pos: usize,
}
impl<T> SimpleQueue<T> {
pub(crate) fn reserve(&mut self, n: usize) {
if n > self.payload.len() {
self.payload.reserve(n - self.payload.len());
}
}
pub(crate) fn size(&self) -> usize {
self.payload.len() - self.pos
}
pub(crate) fn empty(&self) -> bool {
self.pos == self.payload.len()
}
pub(crate) fn push(&mut self, t: T) {
self.payload.push(t);
}
// Do we need mutable version?
pub(crate) fn front(&self) -> Option<&T> {
if self.pos < self.payload.len() {
Some(&self.payload[self.pos])
} else {
None
}
}
pub(crate) fn clear(&mut self) {
self.payload.clear();
self.pos = 0;
}
pub(crate) fn pop(&mut self) -> Option<&T> {
if self.pos < self.payload.len() {
self.pos += 1;
Some(&self.payload[self.pos - 1])
} else {
None
}
}
}
use std::{
ops::{
BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign,
Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign,
},
};
// Skipped:
//
// - `is_signed_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `is_unsigned_int_t<T>` (probably won't be used directly in `modint.rs`)
// - `to_unsigned_t<T>` (not used in `fenwicktree.rs`)
/// Corresponds to `std::is_integral` in C++.
// We will remove unnecessary bounds later.
//
// Maybe we should rename this to `PrimitiveInteger` or something, as it probably won't be used in the
// same way as the original ACL.
pub trait Integral:
'static
+ Send
+ Sync
+ Copy
+ Ord
+ Not<Output = Self>
+ Add<Output = Self>
+ Sub<Output = Self>
+ Mul<Output = Self>
+ Div<Output = Self>
+ Rem<Output = Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssign
+ RemAssign
+ Sum
+ Product
+ BitOr<Output = Self>
+ BitAnd<Output = Self>
+ BitXor<Output = Self>
+ BitOrAssign
+ BitAndAssign
+ BitXorAssign
+ Shl<Output = Self>
+ Shr<Output = Self>
+ ShlAssign
+ ShrAssign
+ fmt::Display
+ fmt::Debug
+ fmt::Binary
+ fmt::Octal
+ Zero
+ One
+ BoundedBelow
+ BoundedAbove
{
}
/// Class that has additive identity element
pub trait Zero {
/// The additive identity element
fn zero() -> Self;
}
/// Class that has multiplicative identity element
pub trait One {
/// The multiplicative identity element
fn one() -> Self;
}
pub trait BoundedBelow {
fn min_value() -> Self;
}
pub trait BoundedAbove {
fn max_value() -> Self;
}
macro_rules! impl_integral {
($($ty:ty),*) => {
$(
impl Zero for $ty {
#[inline]
fn zero() -> Self {
0
}
}
impl One for $ty {
#[inline]
fn one() -> Self {
1
}
}
impl BoundedBelow for $ty {
#[inline]
fn min_value() -> Self {
Self::MIN
}
}
impl BoundedAbove for $ty {
#[inline]
fn max_value() -> Self {
Self::MAX
}
}
impl Integral for $ty {}
)*
};
}
impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
use std::cmp::min;
use std::iter;
impl<Cap> MfGraph<Cap>
where
Cap: Integral,
{
pub fn new(n: usize) -> MfGraph<Cap> {
MfGraph {
_n: n,
pos: Vec::new(),
g: iter::repeat_with(Vec::new).take(n).collect(),
}
}
pub fn add_edge(&mut self, from: usize, to: usize, cap: Cap) -> usize {
assert!(from < self._n);
assert!(to < self._n);
assert!(Cap::zero() <= cap);
let m = self.pos.len();
self.pos.push((from, self.g[from].len()));
let rev = self.g[to].len() + usize::from(from == to);
self.g[from].push(_Edge { to, rev, cap });
let rev = self.g[from].len() - 1;
self.g[to].push(_Edge {
to: from,
rev,
cap: Cap::zero(),
});
m
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Edge<Cap: Integral> {
pub from: usize,
pub to: usize,
pub cap: Cap,
pub flow: Cap,
}
impl<Cap> MfGraph<Cap>
where
Cap: Integral,
{
pub fn get_edge(&self, i: usize) -> Edge<Cap> {
let m = self.pos.len();
assert!(i < m);
let _e = &self.g[self.pos[i].0][self.pos[i].1];
let _re = &self.g[_e.to][_e.rev];
Edge {
from: self.pos[i].0,
to: _e.to,
cap: _e.cap + _re.cap,
flow: _re.cap,
}
}
pub fn edges(&self) -> Vec<Edge<Cap>> {
let m = self.pos.len();
(0..m).map(|i| self.get_edge(i)).collect()
}
pub fn change_edge(&mut self, i: usize, new_cap: Cap, new_flow: Cap) {
let m = self.pos.len();
assert!(i < m);
assert!(Cap::zero() <= new_flow && new_flow <= new_cap);
let (to, rev) = {
let _e = &mut self.g[self.pos[i].0][self.pos[i].1];
_e.cap = new_cap - new_flow;
(_e.to, _e.rev)
};
let _re = &mut self.g[to][rev];
_re.cap = new_flow;
}
/// `s != t` must hold, otherwise it panics.
pub fn flow(&mut self, s: usize, t: usize) -> Cap {
self.flow_with_capacity(s, t, Cap::max_value())
}
/// # Parameters
/// * `s != t` must hold, otherwise it panics.
/// * `flow_limit >= 0`
pub fn flow_with_capacity(&mut self, s: usize, t: usize, flow_limit: Cap) -> Cap {
let n_ = self._n;
assert!(s < n_);
assert!(t < n_);
// By the definition of max flow in appendix.html, this function should return 0
// when the same vertices are provided. On the other hand, it is reasonable to
// return infinity-like value too, which is what the original implementation
// (and this implementation without the following assertion) does.
// Since either return value is confusing, we'd rather deny the parameters
// of the two same vertices.
// For more details, see https://github.com/rust-lang-ja/ac-library-rs/pull/24#discussion_r485343451
// and https://github.com/atcoder/ac-library/issues/5 .
assert_ne!(s, t);
// Additional constraint
assert!(Cap::zero() <= flow_limit);
let mut calc = FlowCalculator {
graph: self,
s,
t,
flow_limit,
level: vec![0; n_],
iter: vec![0; n_],
que: SimpleQueue::default(),
};
let mut flow = Cap::zero();
while flow < flow_limit {
calc.bfs();
if calc.level[t] == -1 {
break;
}
calc.iter.iter_mut().for_each(|e| *e = 0);
while flow < flow_limit {
let f = calc.dfs(t, flow_limit - flow);
if f == Cap::zero() {
break;
}
flow += f;
}
}
flow
}
pub fn min_cut(&self, s: usize) -> Vec<bool> {
let mut visited = vec![false; self._n];
let mut que = SimpleQueue::default();
que.push(s);
while let Some(&p) = que.pop() {
visited[p] = true;
for e in &self.g[p] {
if e.cap != Cap::zero() && !visited[e.to] {
visited[e.to] = true;
que.push(e.to);
}
}
}
visited
}
}
struct FlowCalculator<'a, Cap> {
graph: &'a mut MfGraph<Cap>,
s: usize,
t: usize,
flow_limit: Cap,
level: Vec<i32>,
iter: Vec<usize>,
que: SimpleQueue<usize>,
}
impl<Cap> FlowCalculator<'_, Cap>
where
Cap: Integral,
{
fn bfs(&mut self) {
self.level.iter_mut().for_each(|e| *e = -1);
self.level[self.s] = 0;
self.que.clear();
self.que.push(self.s);
while let Some(&v) = self.que.pop() {
for e in &self.graph.g[v] {
if e.cap == Cap::zero() || self.level[e.to] >= 0 {
continue;
}
self.level[e.to] = self.level[v] + 1;
if e.to == self.t {
return;
}
self.que.push(e.to);
}
}
}
fn dfs(&mut self, v: usize, up: Cap) -> Cap {
if v == self.s {
return up;
}
let mut res = Cap::zero();
let level_v = self.level[v];
for i in self.iter[v]..self.graph.g[v].len() {
self.iter[v] = i;
let &_Edge {
to: e_to,
rev: e_rev,
..
} = &self.graph.g[v][i];
if level_v <= self.level[e_to] || self.graph.g[e_to][e_rev].cap == Cap::zero() {
continue;
}
let d = self.dfs(e_to, min(up - res, self.graph.g[e_to][e_rev].cap));
if d <= Cap::zero() {
continue;
}
self.graph.g[v][i].cap += d;
self.graph.g[e_to][e_rev].cap -= d;
res += d;
if res == up {
return res;
}
}
self.iter[v] = self.graph.g[v].len();
res
}
}
#[derive(Clone, Debug, Default)]
pub struct MfGraph<Cap> {
_n: usize,
pos: Vec<(usize, usize)>,
g: Vec<Vec<_Edge<Cap>>>,
}
#[derive(Clone, Debug)]
struct _Edge<Cap> {
to: usize,
rev: usize,
cap: Cap,
}
const B: i64 = 1<<40;
//use proconio::fastout;
//#[fastout]
fn main() {
input!{
n: usize,
p: [i64; n],
m: usize,
e: [(Usize1, Usize1); m],
k: usize,
s: [(Usize1, Usize1, i64); k],
}
let mut mf = MfGraph::new(n+k+2);
let st = n+k;
let end = n+k+1;
let mut ans = 0;
for (i, &v) in p.iter().enumerate(){
if v >= 0{
ans += v;
mf.add_edge(st, i, v);
mf.add_edge(i, end, 0);
} else {
mf.add_edge(st, i, 0);
mf.add_edge(i, end, -v);
}
}
for &(u, v) in &e{
mf.add_edge(v, u, B);
}
for (idx, &(u, v, add)) in s.iter().enumerate(){
let p = idx+n;
mf.add_edge(st, p, add);
mf.add_edge(p, u, B);
mf.add_edge(p, v, B);
ans += add;
}
println!("{}", ans-mf.flow(st, end));
}