結果
問題 |
No.3202 Periodic Alternating Subsequence
|
ユーザー |
|
提出日時 | 2025-07-11 23:34:25 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 664 ms / 2,000 ms |
コード長 | 47,268 bytes |
コンパイル時間 | 2,177 ms |
コンパイル使用メモリ | 154,364 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-07-11 23:34:42 |
合計ジャッジ時間 | 16,372 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 24 |
ソースコード
#include <array> #include <algorithm> #include <iostream> #include <iomanip> #include <optional> #include <cassert> #include <deque> #include <fstream> #include <iterator> #include <set> #include <utility> #include <numeric> #include <stack> #include <ostream> #include <type_traits> #include <string> #include <map> #include <list> #include <unordered_set> #include <functional> #include <bitset> #include <vector> #include <cstdint> #include <queue> #include <istream> #include <unordered_map> #ifndef KK2_TEMPLATE_PROCON_HPP #define KK2_TEMPLATE_PROCON_HPP 1 #ifndef KK2_TEMPLATE_CONSTANT_HPP #define KK2_TEMPLATE_CONSTANT_HPP 1 #ifndef KK2_TEMPLATE_TYPE_ALIAS_HPP #define KK2_TEMPLATE_TYPE_ALIAS_HPP 1 using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using pi = std::pair<int, int>; using pl = std::pair<i64, i64>; using pil = std::pair<int, i64>; using pli = std::pair<i64, int>; template <class T> using vc = std::vector<T>; template <class T> using vvc = std::vector<vc<T>>; template <class T> using vvvc = std::vector<vvc<T>>; template <class T> using vvvvc = std::vector<vvvc<T>>; template <class T> using pq = std::priority_queue<T>; template <class T> using pqi = std::priority_queue<T, std::vector<T>, std::greater<T>>; #endif // KK2_TEMPLATE_TYPE_ALIAS_HPP template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = (1 << 30) - 123; template <> constexpr i64 infty<i64> = (1ll << 62) - (1ll << 31); template <> constexpr i128 infty<i128> = (i128(1) << 126) - (i128(1) << 63); template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<i64>; template <> constexpr u128 infty<u128> = infty<i128>; template <> constexpr double infty<double> = infty<i64>; template <> constexpr long double infty<long double> = infty<i64>; constexpr int mod = 998244353; constexpr int modu = 1e9 + 7; constexpr long double PI = 3.14159265358979323846; #endif // KK2_TEMPLATE_CONSTANT_HPP #ifndef KK2_TEMPLATE_FUNCTION_UTIL_HPP #define KK2_TEMPLATE_FUNCTION_UTIL_HPP 1 #ifndef KK2_MATH_MONOID_MAX_HPP #define KK2_MATH_MONOID_MAX_HPP 1 #ifndef KK2_TYPE_TRAITS_IO_HPP #define KK2_TYPE_TRAITS_IO_HPP 1 namespace kk2 { namespace type_traits { struct istream_tag {}; struct ostream_tag {}; } // namespace type_traits template <typename T> using is_standard_istream = typename std::conditional<std::is_same<T, std::istream>::value || std::is_same<T, std::ifstream>::value, std::true_type, std::false_type>::type; template <typename T> using is_standard_ostream = typename std::conditional<std::is_same<T, std::ostream>::value || std::is_same<T, std::ofstream>::value, std::true_type, std::false_type>::type; template <typename T> using is_user_defined_istream = std::is_base_of<type_traits::istream_tag, T>; template <typename T> using is_user_defined_ostream = std::is_base_of<type_traits::ostream_tag, T>; template <typename T> using is_istream = typename std::conditional<is_standard_istream<T>::value || is_user_defined_istream<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_ostream = typename std::conditional<is_standard_ostream<T>::value || is_user_defined_ostream<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_istream_t = std::enable_if_t<is_istream<T>::value>; template <typename T> using is_ostream_t = std::enable_if_t<is_ostream<T>::value>; } // namespace kk2 #endif // KK2_TYPE_TRAITS_IO_HPP namespace kk2 { namespace monoid { template <class S, class Compare = std::less<S>> struct Max { static constexpr bool commutative = true; using M = Max; S a; bool is_unit; Max() : a(S()), is_unit(true) {} Max(S a_) : a(a_), is_unit(false) {} operator S() const { return a; } inline static M op(M l, M r) { if (l.is_unit or r.is_unit) return l.is_unit ? r : l; return Compare{}(l.a, r.a) ? r : l; } inline static M unit() { return M(); } bool operator==(const M &rhs) const { return is_unit == rhs.is_unit and (is_unit or a == rhs.a); } bool operator!=(const M &rhs) const { return is_unit != rhs.is_unit or (!is_unit and a != rhs.a); } template <class OStream, is_ostream_t<OStream> * = nullptr> friend OStream &operator<<(OStream &os, const M &x) { if (x.is_unit) os << "-inf"; else os << x.a; return os; } template <class IStream, is_istream_t<IStream> * = nullptr> friend IStream &operator>>(IStream &is, M &x) { is >> x.a; x.is_unit = false; return is; } }; } // namespace monoid } // namespace kk2 #endif // MATH_MONOID_MAX_HPP #ifndef KK2_MATH_MONOID_MIN_HPP #define KK2_MATH_MONOID_MIN_HPP 1 namespace kk2 { namespace monoid { template <class S, class Compare = std::less<S>> struct Min { static constexpr bool commutative = true; using M = Min; S a; bool is_unit; Min() : a(S()), is_unit(true) {} Min(S a_) : a(a_), is_unit(false) {} operator S() const { return a; } inline static M op(M l, M r) { if (l.is_unit or r.is_unit) return l.is_unit ? r : l; return Compare{}(l.a, r.a) ? l : r; } inline static M unit() { return M(); } bool operator==(const M &rhs) const { return is_unit == rhs.is_unit and (is_unit or a == rhs.a); } bool operator!=(const M &rhs) const { return is_unit != rhs.is_unit or (!is_unit and a != rhs.a); } template <class OStream, is_ostream_t<OStream> * = nullptr> friend OStream &operator<<(OStream &os, const M &x) { if (x.is_unit) os << "inf"; else os << x.a; return os; } template <class IStream, is_istream_t<IStream> * = nullptr> friend IStream &operator>>(IStream &is, M &x) { is >> x.a; x.is_unit = false; return is; } }; } // namespace monoid } // namespace kk2 #endif // KK2_MATH_MONOID_MIN_HPP #ifndef KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP #define KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP 1 namespace kk2 { template <typename T> struct is_vector : std::false_type {}; template <typename T, typename Alloc> struct is_vector<std::vector<T, Alloc>> : std::true_type {}; // コンテナかどうかを判定するtraits template <typename T> struct is_container : std::false_type {}; // 基本的なコンテナ型の特殊化 template <typename T, typename Alloc> struct is_container<std::vector<T, Alloc>> : std::true_type { }; template <typename CharT, typename Traits, typename Alloc> struct is_container<std::basic_string<CharT, Traits, Alloc>> : std::true_type {}; template <typename T, std::size_t N> struct is_container<std::array<T, N>> : std::true_type {}; template <typename T, typename Alloc> struct is_container<std::deque<T, Alloc>> : std::true_type {}; template <typename T, typename Alloc> struct is_container<std::list<T, Alloc>> : std::true_type {}; // SFINAEでコンテナを判定するためのヘルパー template <typename T> using is_container_t = typename std::enable_if_t<is_container<T>::value, std::nullptr_t>; } // namespace kk2 #endif // KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP namespace kk2 { template <class T, class... Sizes> auto make_vector(int first, Sizes... sizes) { if constexpr (sizeof...(sizes) == 0) { return std::vector<T>(first); } else { return std::vector<decltype(make_vector<T>(sizes...))>(first, make_vector<T>(sizes...)); } } template <class T, class U> void fill_all(std::vector<T> &v, const U &x) { if constexpr (is_vector<T>::value) { for (auto &u : v) fill_all(u, x); } else { std::fill(v.begin(), v.end(), T(x)); } } template <class T, class U> int iota_all(std::vector<T> &v, U x, int offset = 0) { if constexpr (is_vector<T>::value) { for (auto &u : v) offset += iota_all(u, x + offset); } else { for (auto &u : v) u = x++, ++offset; } return offset; } template <class C> int mysize(const C &c) { return size(c); } // T: commutative monoid, F: (U, T) -> U template <class U, class T, class F> U all_monoid_prod(const std::vector<T> &v, U unit, const F &f) { U res = unit; if constexpr (is_vector<T>::value) { for (const auto &x : v) res = f(res, all_monoid_prod(x, unit, f)); } else { for (const auto &x : v) res = f(res, x); } return res; } template <class U, class T> U all_sum(const std::vector<T> &v, U unit = U()) { return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a + b; }); } template <class U, class T> U all_prod(const std::vector<T> &v, U unit = U(1)) { return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a * b; }); } template <class U, class T> U all_xor(const std::vector<T> &v, U unit = U()) { return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a ^ b; }); } template <class U, class T> U all_and(const std::vector<T> &v, U unit = U(-1)) { return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a & b; }); } template <class U, class T> U all_or(const std::vector<T> &v, U unit = U()) { return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a | b; }); } template <class U, class T> U all_min(const std::vector<T> &v) { return all_monoid_prod<monoid::Min<U>, T>(v, monoid::Min<U>::unit(), monoid::Min<U>::op); } template <class U, class T> U all_max(const std::vector<T> &v) { return all_monoid_prod<monoid::Max<U>, T>(v, monoid::Max<U>::unit(), monoid::Max<U>::op); } template <class U, class T> U all_gcd(const std::vector<T> &v, U unit = U()) { return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return std::gcd(a, b); }); } template <class U, class T> U all_lcm(const std::vector<T> &v, U unit = U(1)) { return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return std::lcm(a, b); }); } } // namespace kk2 #endif // KK2_TEMPLATE_FUNCTION_UTIL_HPP #ifndef KK2_TEMPLATE_IO_UTIL_HPP #define KK2_TEMPLATE_IO_UTIL_HPP 1 // なんかoj verifyはプロトタイプ宣言が落ちる namespace impl { struct read { template <class IStream, class T> inline static void all_read(IStream &is, T &x) { is >> x; } template <class IStream, class T, class U> inline static void all_read(IStream &is, std::pair<T, U> &p) { all_read(is, p.first); all_read(is, p.second); } template <class IStream, class T> inline static void all_read(IStream &is, std::vector<T> &v) { for (T &x : v) all_read(is, x); } template <class IStream, class T, size_t F> inline static void all_read(IStream &is, std::array<T, F> &a) { for (T &x : a) all_read(is, x); } }; struct write { template <class OStream, class T> inline static void all_write(OStream &os, const T &x) { os << x; } template <class OStream, class T, class U> inline static void all_write(OStream &os, const std::pair<T, U> &p) { all_write(os, p.first); all_write(os, ' '); all_write(os, p.second); } template <class OStream, class T> inline static void all_write(OStream &os, const std::vector<T> &v) { for (int i = 0; i < (int)v.size(); ++i) { if (i) all_write(os, ' '); all_write(os, v[i]); } } template <class OStream, class T, size_t F> inline static void all_write(OStream &os, const std::array<T, F> &a) { for (int i = 0; i < (int)F; ++i) { if (i) all_write(os, ' '); all_write(os, a[i]); } } }; } // namespace impl template <class IStream, class T, class U, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::pair<T, U> &p) { impl::read::all_read(is, p); return is; } template <class IStream, class T, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::vector<T> &v) { impl::read::all_read(is, v); return is; } template <class IStream, class T, size_t F, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::array<T, F> &a) { impl::read::all_read(is, a); return is; } template <class OStream, class T, class U, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::pair<T, U> &p) { impl::write::all_write(os, p); return os; } template <class OStream, class T, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::vector<T> &v) { impl::write::all_write(os, v); return os; } template <class OStream, class T, size_t F, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::array<T, F> &a) { impl::write::all_write(os, a); return os; } #endif // KK2_TEMPLATE_IO_UTIL_HPP #ifndef KK2_TEMPLATE_MACROS_HPP #define KK2_TEMPLATE_MACROS_HPP 1 #define rep1(a) for (long long _ = 0; _ < (long long)(a); ++_) #define rep2(i, a) for (long long i = 0; i < (long long)(a); ++i) #define rep3(i, a, b) for (long long i = (a); i < (long long)(b); ++i) #define repi2(i, a) for (long long i = (a) - 1; i >= 0; --i) #define repi3(i, a, b) for (long long i = (a) - 1; i >= (long long)(b); --i) #define overload3(a, b, c, d, ...) d #define rep(...) overload3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repi(...) overload3(__VA_ARGS__, repi3, repi2, rep1)(__VA_ARGS__) #define fi first #define se second #define all(p) begin(p), end(p) #endif // KK2_TEMPLATE_MACROS_HPP struct FastIOSetUp { FastIOSetUp() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } } fast_io_set_up; auto &kin = std::cin; auto &kout = std::cout; auto (*kendl)(std::ostream &) = std::endl<char, std::char_traits<char>>; void Yes(bool b = 1) { kout << (b ? "Yes\n" : "No\n"); } void No(bool b = 1) { kout << (b ? "No\n" : "Yes\n"); } void YES(bool b = 1) { kout << (b ? "YES\n" : "NO\n"); } void NO(bool b = 1) { kout << (b ? "NO\n" : "YES\n"); } void yes(bool b = 1) { kout << (b ? "yes\n" : "no\n"); } void no(bool b = 1) { kout << (b ? "no\n" : "yes\n"); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } std::istream &operator>>(std::istream &is, u128 &x) { std::string s; is >> s; x = 0; for (char c : s) { assert('0' <= c && c <= '9'); x = x * 10 + c - '0'; } return is; } std::istream &operator>>(std::istream &is, i128 &x) { std::string s; is >> s; bool neg = s[0] == '-'; x = 0; for (int i = neg; i < (int)s.size(); i++) { assert('0' <= s[i] && s[i] <= '9'); x = x * 10 + s[i] - '0'; } if (neg) x = -x; return is; } std::ostream &operator<<(std::ostream &os, u128 x) { if (x == 0) return os << '0'; std::string s; while (x) { s.push_back('0' + x % 10); x /= 10; } std::reverse(s.begin(), s.end()); return os << s; } std::ostream &operator<<(std::ostream &os, i128 x) { if (x == 0) return os << '0'; if (x < 0) { os << '-'; x = -x; } std::string s; while (x) { s.push_back('0' + x % 10); x /= 10; } std::reverse(s.begin(), s.end()); return os << s; } #endif // KK2_TEMPLATE_PROCON_HPP #ifndef KK2_TEMPLATE_DEBUG_HPP #define KK2_TEMPLATE_DEBUG_HPP 1 #ifndef KK2_TYPE_TRAITS_MEMBER_HPP #define KK2_TYPE_TRAITS_MEMBER_HPP 1 namespace kk2 { #define HAS_MEMBER_FUNC(member) \ template <typename T, typename... Ts> struct has_member_func_##member##_impl { \ template <typename U> \ static std::true_type check(decltype(std::declval<U>().member(std::declval<Ts>()...)) *); \ template <typename U> static std::false_type check(...); \ using type = decltype(check<T>(nullptr)); \ }; \ template <typename T, typename... Ts> struct has_member_func_##member \ : has_member_func_##member##_impl<T, Ts...>::type {}; \ template <typename T, typename... Ts> using has_member_func_##member##_t = \ std::enable_if_t<has_member_func_##member<T, Ts...>::value>; \ template <typename T, typename... Ts> using not_has_member_func_##member##_t = \ std::enable_if_t<!has_member_func_##member<T, Ts...>::value>; #define HAS_MEMBER_VAR(member) \ template <typename T> struct has_member_var_##member##_impl { \ template <typename U> static std::true_type check(decltype(std::declval<U>().member) *); \ template <typename U> static std::false_type check(...); \ using type = decltype(check<T>(nullptr)); \ }; \ template <typename T> struct has_member_var_##member \ : has_member_var_##member##_impl<T>::type {}; \ template <typename T> using has_member_var_##member##_t = \ std::enable_if_t<has_member_var_##member<T>::value>; \ template <typename T> using not_has_member_var_##member##_t = \ std::enable_if_t<!has_member_var_##member<T>::value>; HAS_MEMBER_FUNC(debug_output) HAS_MEMBER_FUNC(val) #undef HAS_MEMBER_FUNC #undef HAS_MEMBER_VAR } // namespace kk2 #endif // KK2_TYPE_TRAITS_MEMBER_HPP namespace kk2 { namespace debug { #ifdef KK2 template <class OStream, is_ostream_t<OStream> *> void output(OStream &os); template <class OStream, class T, is_ostream_t<OStream> *> void output(OStream &os, const T &t); template <class OStream, class T, is_ostream_t<OStream> *> void output(OStream &os, const std::vector<T> &v); template <class OStream, class T, is_ostream_t<OStream> *> void output(OStream &os, const std::vector<std::vector<T>> &d); template <class OStream, class T, size_t F, is_ostream_t<OStream> *> void output(OStream &os, const std::array<T, F> &a); template <class OStream, class T, class U, is_ostream_t<OStream> *> void output(OStream &os, const std::pair<T, U> &p); template <class OStream, class T, is_ostream_t<OStream> *> void output(OStream &os, const std::queue<T> &q); template <class OStream, class T, class Container, class Compare, is_ostream_t<OStream> *> void output(OStream &os, const std::priority_queue<T, Container, Compare> &q); template <class OStream, class T, is_ostream_t<OStream> *> void output(OStream &os, const std::deque<T> &d); template <class OStream, class T, is_ostream_t<OStream> *> void output(OStream &os, const std::stack<T> &s); template <class OStream, class Key, class Compare, class Allocator, is_ostream_t<OStream> *> void output(OStream &os, const std::set<Key, Compare, Allocator> &s); template <class OStream, class Key, class Compare, class Allocator, is_ostream_t<OStream> *> void output(OStream &os, const std::multiset<Key, Compare, Allocator> &s); template <class OStream, class Key, class Hash, class KeyEqual, class Allocator, is_ostream_t<OStream> *> void output(OStream &os, const std::unordered_set<Key, Hash, KeyEqual, Allocator> &s); template <class OStream, class Key, class Hash, class KeyEqual, class Allocator, is_ostream_t<OStream> *> void output(OStream &os, const std::unordered_multiset<Key, Hash, KeyEqual, Allocator> &s); template <class OStream, class Key, class T, class Compare, class Allocator, is_ostream_t<OStream> *> void output(OStream &os, const std::map<Key, T, Compare, Allocator> &m); template <class OStream, class Key, class T, class Hash, class KeyEqual, class Allocator, is_ostream_t<OStream> *> void output(OStream &os, const std::unordered_map<Key, T, Hash, KeyEqual, Allocator> &m); template <class OStream, is_ostream_t<OStream> * = nullptr> void output(OStream &) {} template <class OStream, class T, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const T &t) { if constexpr (has_member_func_debug_output<T, OStream &>::value) { t.debug_output(os); } else { os << t; } } template <class OStream, class T, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::vector<T> &v) { os << "["; for (int i = 0; i < (int)v.size(); i++) { output(os, v[i]); if (i + 1 != (int)v.size()) os << ", "; } os << "]"; } template <class OStream, class T, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::vector<std::vector<T>> &d) { os << "[\n"; for (int i = 0; i < (int)d.size(); i++) { output(os, d[i]); output(os, "\n"); } os << "]"; } template <class OStream, class T, size_t F, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::array<T, F> &a) { os << "["; for (int i = 0; i < (int)F; i++) { output(os, a[i]); if (i + 1 != (int)F) os << ", "; } os << "]"; } template <class OStream, class T, class U, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::pair<T, U> &p) { os << "("; output(os, p.first); os << ", "; output(os, p.second); os << ")"; } template <class OStream, class T, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::queue<T> &q) { os << "["; std::queue<T> tmp = q; while (!tmp.empty()) { output(os, tmp.front()); tmp.pop(); if (!tmp.empty()) os << ", "; } os << "]"; } template <class OStream, class T, class Container, class Compare, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::priority_queue<T, Container, Compare> &q) { os << "["; std::priority_queue<T, Container, Compare> tmp = q; while (!tmp.empty()) { output(os, tmp.top()); tmp.pop(); if (!tmp.empty()) os << ", "; } os << "]"; } template <class OStream, class T, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::deque<T> &d) { os << "["; std::deque<T> tmp = d; while (!tmp.empty()) { output(os, tmp.front()); tmp.pop_front(); if (!tmp.empty()) os << ", "; } os << "]"; } template <class OStream, class T, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::stack<T> &s) { os << "["; std::stack<T> tmp = s; std::vector<T> v; while (!tmp.empty()) { v.push_back(tmp.top()); tmp.pop(); } for (int i = (int)v.size() - 1; i >= 0; i--) { output(os, v[i]); if (i != 0) os << ", "; } os << "]"; } template <class OStream, class Key, class Compare, class Allocator, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::set<Key, Compare, Allocator> &s) { os << "{"; std::set<Key, Compare, Allocator> tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template <class OStream, class Key, class Compare, class Allocator, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::multiset<Key, Compare, Allocator> &s) { os << "{"; std::multiset<Key, Compare, Allocator> tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template <class OStream, class Key, class Hash, class KeyEqual, class Allocator, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::unordered_set<Key, Hash, KeyEqual, Allocator> &s) { os << "{"; std::unordered_set<Key, Hash, KeyEqual, Allocator> tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template <class OStream, class Key, class Hash, class KeyEqual, class Allocator, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::unordered_multiset<Key, Hash, KeyEqual, Allocator> &s) { os << "{"; std::unordered_multiset<Key, Hash, KeyEqual, Allocator> tmp = s; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, *it); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template <class OStream, class Key, class T, class Compare, class Allocator, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::map<Key, T, Compare, Allocator> &m) { os << "{"; std::map<Key, T, Compare, Allocator> tmp = m; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, it->first); os << ": "; output(os, it->second); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template <class OStream, class Key, class T, class Hash, class KeyEqual, class Allocator, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const std::unordered_map<Key, T, Hash, KeyEqual, Allocator> &m) { os << "{"; std::unordered_map<Key, T, Hash, KeyEqual, Allocator> tmp = m; for (auto it = tmp.begin(); it != tmp.end(); ++it) { output(os, it->first); os << ": "; output(os, it->second); if (std::next(it) != tmp.end()) os << ", "; } os << "}"; } template <class OStream, class T, class... Args, is_ostream_t<OStream> * = nullptr> void output(OStream &os, const T &t, const Args &...args) { output(os, t); os << ' '; output(os, args...); } template <class OStream, is_ostream_t<OStream> * = nullptr> void outputln(OStream &os) { os << '\n'; os.flush(); } template <class OStream, class T, class... Args, is_ostream_t<OStream> * = nullptr> void outputln(OStream &os, const T &t, const Args &...args) { output(os, t, args...); os << '\n'; os.flush(); } std::vector<std::string> sep(const char *s) { std::vector<std::string> res; std::string now; int dep = 0; while (true) { if (*s == '\0') { res.emplace_back(now); break; } if (*s == '(' or *s == '[' or *s == '{') dep++; if (*s == ')' or *s == ']' or *s == '}') dep--; if (dep == 0 and *s == ',') { res.emplace_back(now); now.clear(); } else if (!isspace(*s)) { now += *s; } s++; } return res; } void show_vars(const std::vector<std::string> &, int) {} template <class T, class... Args> void show_vars(const std::vector<std::string> &name, int pos, const T &t, const Args &...args) { // assert(pos < (int)name.size()); output(std::cerr, name[pos++] + ":", t); if (sizeof...(args) > 0) output(std::cerr, ", "); show_vars(name, pos, args...); } #define kdebug(...) \ std::cerr << "line:" << __LINE__ << ' '; \ kk2::debug::show_vars(kk2::debug::sep(#__VA_ARGS__), 0, __VA_ARGS__); \ std::cerr << std::endl; #define kput(s) \ std::cerr << "line:" << __LINE__ << ' '; \ kk2::debug::outputln(std::cerr, s); #else template <class OStream, class... Args, is_ostream_t<OStream> * = nullptr> void output(OStream &, const Args &...) {} template <class OStream, class... Args, is_ostream_t<OStream> * = nullptr> void outputln(OStream &, const Args &...) {} template <class... Args> void fix_warn(const Args &...) {} #define kdebug(...) kk2::debug::fix_warn(__VA_ARGS__); #define kput(s) kk2::debug::fix_warn(s) #endif // KK2 } // namespace debug } // namespace kk2 #endif // KK2_TEMPLATE_DEBUG_HPP #ifndef KK2_MODINT_MONT_HPP #define KK2_MODINT_MONT_HPP 1 #ifndef KK2_TYPE_TRAITS_INTERGRAL_HPP #define KK2_TYPE_TRAITS_INTERGRAL_HPP 1 namespace kk2 { #ifndef _MSC_VER template <typename T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value or std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <typename T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value or std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <typename T> using is_integral = typename std::conditional<std::is_integral<T>::value or is_signed_int128<T>::value or is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_signed = typename std::conditional<std::is_signed<T>::value or is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_unsigned = typename std::conditional<std::is_unsigned<T>::value or is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <typename T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <typename T> using is_integral = std::enable_if_t<std::is_integral<T>::value>; template <typename T> using is_signed = std::enable_if_t<std::is_signed<T>::value>; template <typename T> using is_unsigned = std::enable_if_t<std::is_unsigned<T>::value>; template <typename T> using to_unsigned = std::make_unsigned<T>; #endif // _MSC_VER template <typename T> using is_integral_t = std::enable_if_t<is_integral<T>::value>; template <typename T> using is_signed_t = std::enable_if_t<is_signed<T>::value>; template <typename T> using is_unsigned_t = std::enable_if_t<is_unsigned<T>::value>; } // namespace kk2 #endif // KK2_TYPE_TRAITS_INTERGRAL_HPP namespace kk2 { template <int p> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = p; for (int i = 0; i < 4; ++i) ret *= 2 - p * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(p) % p; static_assert(r * p == 1, "invalid, r * p != 1"); static_assert(p < (1 << 30), "invalid, p >= 2 ^ 30"); static_assert((p & 1) == 1, "invalid, p % 2 == 0"); u32 _v; constexpr LazyMontgomeryModInt() : _v(0) {} template <typename T, is_integral_t<T> * = nullptr> constexpr LazyMontgomeryModInt(T b) : _v(reduce(u64(b % p + p) * n2)) {} static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * p) >> 32; } constexpr mint &operator++() { return *this += 1; } constexpr mint &operator--() { return *this -= 1; } constexpr mint operator++(int) { mint ret = *this; *this += 1; return ret; } constexpr mint operator--(int) { mint ret = *this; *this -= 1; return ret; } constexpr mint &operator+=(const mint &b) { if (i32(_v += b._v - 2 * p) < 0) _v += 2 * p; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(_v -= b._v) < 0) _v += 2 * p; return *this; } constexpr mint &operator*=(const mint &b) { _v = reduce(u64(_v) * b._v); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inv(); return *this; } constexpr bool operator==(const mint &b) const { return (_v >= p ? _v - p : _v) == (b._v >= p ? b._v - p : b._v); } constexpr bool operator!=(const mint &b) const { return (_v >= p ? _v - p : _v) != (b._v >= p ? b._v - p : b._v); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } friend constexpr mint operator+(const mint &a, const mint &b) { return mint(a) += b; } friend constexpr mint operator-(const mint &a, const mint &b) { return mint(a) -= b; } friend constexpr mint operator*(const mint &a, const mint &b) { return mint(a) *= b; } friend constexpr mint operator/(const mint &a, const mint &b) { return mint(a) /= b; } template <class T> constexpr mint pow(T n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; if (n >>= 1) mul *= mul; } return ret; } constexpr mint inv() const { assert(*this != mint(0)); return pow(p - 2); } template <class OStream, is_ostream_t<OStream> * = nullptr> friend OStream &operator<<(OStream &os, const mint &x) { return os << x.val(); } template <class IStream, is_istream_t<IStream> * = nullptr> friend IStream &operator>>(IStream &is, mint &x) { i64 t; is >> t; x = mint(t); return (is); } constexpr u32 val() const { u32 ret = reduce(_v); return ret >= p ? ret - p : ret; } static constexpr u32 getmod() { return p; } }; template <int p> using Mont = LazyMontgomeryModInt<p>; using mont998 = Mont<998244353>; using mont107 = Mont<1000000007>; } // namespace kk2 #endif // KK2_MODINT_MONT_HPP #ifndef KK2_MATRIX_MATRIX_FIELD_HPP #define KK2_MATRIX_MATRIX_FIELD_HPP 1 namespace kk2 { /** * @brief 行列 * * @tparam Field invメンバが必要 */ template <class Field> struct MatrixField { using value_type = Field; using mat = MatrixField; int _h, _w; std::vector<std::vector<Field>> _mat; MatrixField() : MatrixField(0) {} MatrixField(int n) : MatrixField(n, n) {} MatrixField(int h, int w) { if (h == 0) { _h = 0; _w = w; } else { _h = h; _w = w; _mat.resize(h, std::vector<Field>(w)); } } MatrixField(const std::vector<std::vector<Field>> &mat_) : _h(mat_.size()), _w(mat_[0].size()), _mat(mat_) {} static mat unit(int n) { mat res(n, n); for (int i = 0; i < n; i++) res[i][i] = Field(1); return res; } inline int get_h() const { return _h; } inline int get_w() const { return _w; } std::vector<Field> &operator[](int i) { assert(0 <= i && i < _h); return _mat[i]; } const std::vector<Field> &operator[](int i) const { assert(0 <= i && i < _h); return _mat[i]; } template <class IStream, is_istream_t<IStream> * = nullptr> mat &input(IStream &is) { for (int i = 0; i < _h; i++) { for (int j = 0; j < _w; j++) { is >> _mat[i][j]; } } return *this; } template <class OStream, is_ostream_t<OStream> * = nullptr> void output(OStream &os) const { for (int i = 0; i < _h; i++) { for (int j = 0; j < _w; j++) os << _mat[i][j] << " \n"[j == _w - 1]; } } template <class OStream, is_ostream_t<OStream> * = nullptr> void debug_output(OStream &os) const { os << "(h, w): " << "(" << _h << ", " << _w << "), [\n"; for (int i = 0; i < _h; i++) { os << " [ "; for (int j = 0; j < _w; j++) os << _mat[i][j] << " "; os << "]\n"; } os << "]\n"; } mat &operator+=(const mat &rhs) { assert(_h == rhs._h); assert(_w == rhs._w); for (int i = 0; i < _h; i++) { for (int j = 0; j < _w; j++) { _mat[i][j] += rhs._mat[i][j]; } } return *this; } mat &operator-=(const mat &rhs) { assert(_h == rhs._h); assert(_w == rhs._w); for (int i = 0; i < _h; i++) { for (int j = 0; j < _w; j++) { _mat[i][j] -= rhs._mat[i][j]; } } return *this; } mat &operator*=(const mat &rhs) { assert(_w == rhs._h); std::vector<std::vector<Field>> res(_h, std::vector<Field>(rhs._w, Field())); for (int i = 0; i < _h; i++) { for (int k = 0; k < _w; k++) { for (int j = 0; j < rhs._w; j++) { res[i][j] += _mat[i][k] * rhs._mat[k][j]; } } } _w = rhs._w; _mat = std::move(res); return *this; } /** * @brief 掃き出し * @tparam RREF 行簡約化行列にするかどうか * @tparam EARLY_TERMINATE フルランクでないことが確定したときに即打ち切るかどうか * @param wr 列が[0, wr)の範囲だけで掃き出す.指定がないなら全体で掃き出す. * @return ランクと行列式を返す. */ template <bool RREF = true, bool EARLY_TERMINATE = false> std::pair<int, Field> sweep(int wr = -1) { if (wr == -1) wr = _w; int r = 0; Field det = 1; for (int i = 0; i < wr; ++i) { if (r >= _h) break; int pivot = r; while (pivot < _h and _mat[pivot][i] == Field(0)) ++pivot; if (pivot == _h) { if constexpr (EARLY_TERMINATE) return {-1, Field(0)}; det = 0; continue; } if (r != pivot) { det = -det; std::swap(_mat[r], _mat[pivot]); } det *= _mat[r][i]; Field inv = _mat[r][i].inv(); for (int j = i; j < wr; ++j) _mat[r][j] *= inv; for (int j = RREF ? 0 : r + 1; j < _h; ++j) { if (j == r) continue; Field a = _mat[j][i]; if (a == Field(0)) continue; for (int k = i; k < wr; ++k) { _mat[j][k] -= _mat[r][k] * a; } } r++; } return {r, det}; } mat &to_upper_Hessenberg() { assert(_h == _w); int n = _h; for (int i = 0; i < n - 1; ++i) { int pivot = i + 1; while (pivot < n and _mat[pivot][i] == Field(0)) ++pivot; if (pivot == n) continue; if (pivot != i + 1) { std::swap(_mat[pivot], _mat[i + 1]); for (int j = 0; j < n; ++j) std::swap(_mat[j][i + 1], _mat[j][pivot]); } if (_mat[i + 1][i] != Field(1)) { Field a = _mat[i + 1][i], iv = a.inv(); for (int j = i; j < n; ++j) _mat[i + 1][j] *= iv; for (int j = 0; j < n; ++j) _mat[j][i + 1] *= a; } for (int j = i + 2; j < n; ++j) { Field a = _mat[j][i]; if (a == Field(0)) continue; for (int k = i; k < n; ++k) _mat[j][k] -= _mat[i + 1][k] * a; for (int k = 0; k < n; ++k) _mat[k][i + 1] += _mat[k][j] * a; } } return *this; } Field det() const { assert(_h == _w); return mat(*this).sweep<false, true>().second; } std::optional<mat> inv() const { assert(_h == _w); int n = _h; mat res(*this); res.inplace_combine_right(mat::unit(n)); int r = res.sweep<true, true>().first; if (r != n) return std::nullopt; for (int i = 0; i < n; i++) res._mat[i].erase(res[i].begin(), res[i].begin() + n); res._w = n; return res; } int rank() const { return mat(*this).sweep<false, false>().first; } mat &shrink() { while (_h and _mat.back() == std::vector<Field>(_w, Field())) _mat.pop_back(), _h--; return *this; } template <class T> mat pow(T n) const { assert(_h == _w); assert(n >= 0); mat mul(_mat), res = mat::unit(_h); while (n) { if (n & 1) res *= mul; if (n >>= 1) mul *= mul; } return res; } std::optional<mat> solve(const mat &b) const { assert(_h == b._h); assert(b._w == 1); mat ab = combine_right(b); int r = ab.sweep<true, false>().first; if ([&]() { if (!r) return false; for (int i = 0; i < _w; i++) if (ab[r - 1][i] != Field()) return false; return true; }()) { return std::nullopt; } mat res(1 + _w - r, _w); std::vector<int> idx(_w, -1), step(r, -1); for (int i = 0, j = 0, now = 0; j < _w; j++) { if (i == r or ab[i][j] == Field(0)) idx[j] = now, res[1 + now++][j] = 1; else res[0][j] = ab[i].back(), step[i++] = j; } for (int i = 0; i < r; i++) { for (int j = 0; j < _w; j++) { if (idx[j] != -1) res[idx[j] + 1][step[i]] = -ab[i][j]; } } return res; } mat &inplace_combine_top(const mat &rhs) { assert(_w == rhs._w); _mat.insert(_mat.begin(), rhs._mat.begin(), rhs._mat.end()); _h += rhs._h; return *this; } mat &inplace_combine_bottom(const mat &rhs) { assert(_w == rhs._w); _mat.insert(_mat.end(), rhs._mat.begin(), rhs._mat.end()); _h += rhs._h; return *this; } mat &inplace_combine_left(const mat &rhs) { assert(_h == rhs._h); for (int i = 0; i < _h; i++) _mat[i].insert(_mat[i].begin(), rhs[i].begin(), rhs[i].end()); _w += rhs._w; return *this; } mat &inplace_combine_right(const mat &rhs) { assert(_h == rhs._h); for (int i = 0; i < _h; i++) _mat[i].insert(_mat[i].end(), rhs[i].begin(), rhs[i].end()); _w += rhs._w; return *this; } mat transpose() const { mat res(_w, _h); for (int i = 0; i < _h; i++) { for (int j = 0; j < _w; j++) { res[j][i] = _mat[i][j]; } } return res; } mat combine_top(const mat &rhs) const { return mat(*this).inplace_combine_top(rhs); } mat combine_bottom(const mat &rhs) const { return mat(*this).inplace_combine_bottom(rhs); } mat combine_left(const mat &rhs) const { return mat(*this).inplace_combine_left(rhs); } mat combine_right(const mat &rhs) const { return mat(*this).inplace_combine_right(rhs); } mat &inplace_transpose() { return *this = transpose(); } friend mat operator+(const mat &lhs, const mat &rhs) { return mat(lhs) += rhs; } friend mat operator-(const mat &lhs, const mat &rhs) { return mat(lhs) -= rhs; } friend mat operator*(const mat &lhs, const mat &rhs) { return mat(lhs) *= rhs; } friend bool operator==(const mat &lhs, const mat &rhs) { return lhs._mat == rhs._mat; } friend bool operator!=(const mat &lhs, const mat &rhs) { return lhs._mat != rhs._mat; } }; } // namespace kk2 #endif // KK2_MATRIX_MATRIX_FIELD_HPP // #include <kk2/fps/fps_arb.hpp> using namespace std; void solve() { /* 1, 0, 1, 0, ... 0, 1, 0, 1, ... の長さの二乗の和 外から0で始まっていると考えるてきな 2, 1, 0乗和を持てば更新可能 dp[i][j][k] = i文字目まで,j乗和の和,最後k result: dp[|T|K][2][0] + dp[|T|K][2][1] s[i] = 0 dp[i][2][0] = dp[i-1][2][0] + dp[i-1][2][1] + 2 * dp[i-1][1][1] + dp[i-1][0][1] + 1 dp[i][1][0] = dp[i-1][1][0] + dp[i-1][1][1] + dp[i-1][0][1] + 1 dp[i][0][0] = dp[i-1][0][0] + dp[i-1][0][1] + 1 dp[i][*][1] = dp[i-1][*][1] s[i] = 1 onaji |T|ごとに進むときは,アフィン変換になる */ using mint = kk2::mont107; using mat = kk2::MatrixField<mint>; // using fps = kk2::FPSArb<mint>; string t; kin >> t; i64 k; kin >> k; mat A(6, 6), b(6, 1); A = mat::unit(6); rep (i, t.size()) { mat nA(6, 6), nb(6, 1); nA = mat::unit(6); if (t[i] == '0') { nA[4][5] = 1; nA[4][3] = 2; nA[4][1] = 1; nA[2][3] = 1; nA[2][1] = 1; nA[0][1] = 1; nb[4][0] = 1; nb[2][0] = 1; nb[0][0] = 1; } else { nA[5][4] = 1; nA[5][2] = 2; nA[5][0] = 1; nA[3][2] = 1; nA[3][0] = 1; nA[1][0] = 1; nb[5][0] = 1; nb[3][0] = 1; nb[1][0] = 1; } A = nA * A, b = nA * b + nb; kdebug(b); } kdebug(A); auto pow_sum = [](auto self, const mat& A, i64 l) { // A^{l-1} + ... + A^0 if (l == 1) return mat::unit(A.get_h()); mat tmp = (A.pow(l / 2) + mat::unit(A.get_h())) * self(self, A, l / 2); if (l & 1) tmp = A * tmp + mat::unit(A.get_h()); return tmp; }; // mat s = vvc<mint>{{1, 1}, {0, 1}}; // kdebug(pow_sum(pow_sum, s, 1)); // kdebug(pow_sum(pow_sum, s, 2)); // kdebug(pow_sum(pow_sum, s, 3)); // kdebug(pow_sum(pow_sum, s, 4)); auto res = pow_sum(pow_sum, A, k) * b; kdebug(res); kout << res[4][0] + res[5][0] << "\n"; } int main() { #ifdef KK2 int t = 2; #else int t = 1; #endif // kin >> t; rep (t) solve(); return 0; } // Author: kk2 // converted by https://github.com/kk2a/cpp-bundle // 2025-07-11 23:34:20