結果

問題 No.3202 Periodic Alternating Subsequence
ユーザー kk2a
提出日時 2025-07-11 23:34:25
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 664 ms / 2,000 ms
コード長 47,268 bytes
コンパイル時間 2,177 ms
コンパイル使用メモリ 154,364 KB
実行使用メモリ 7,844 KB
最終ジャッジ日時 2025-07-11 23:34:42
合計ジャッジ時間 16,372 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <array>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <optional>
#include <cassert>
#include <deque>
#include <fstream>
#include <iterator>
#include <set>
#include <utility>
#include <numeric>
#include <stack>
#include <ostream>
#include <type_traits>
#include <string>
#include <map>
#include <list>
#include <unordered_set>
#include <functional>
#include <bitset>
#include <vector>
#include <cstdint>
#include <queue>
#include <istream>
#include <unordered_map>

#ifndef KK2_TEMPLATE_PROCON_HPP
#define KK2_TEMPLATE_PROCON_HPP 1


#ifndef KK2_TEMPLATE_CONSTANT_HPP
#define KK2_TEMPLATE_CONSTANT_HPP 1

#ifndef KK2_TEMPLATE_TYPE_ALIAS_HPP
#define KK2_TEMPLATE_TYPE_ALIAS_HPP 1


using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

using pi = std::pair<int, int>;
using pl = std::pair<i64, i64>;
using pil = std::pair<int, i64>;
using pli = std::pair<i64, int>;

template <class T> using vc = std::vector<T>;
template <class T> using vvc = std::vector<vc<T>>;
template <class T> using vvvc = std::vector<vvc<T>>;
template <class T> using vvvvc = std::vector<vvvc<T>>;

template <class T> using pq = std::priority_queue<T>;
template <class T> using pqi = std::priority_queue<T, std::vector<T>, std::greater<T>>;

#endif // KK2_TEMPLATE_TYPE_ALIAS_HPP

template <class T> constexpr T infty = 0;
template <> constexpr int infty<int> = (1 << 30) - 123;
template <> constexpr i64 infty<i64> = (1ll << 62) - (1ll << 31);
template <> constexpr i128 infty<i128> = (i128(1) << 126) - (i128(1) << 63);
template <> constexpr u32 infty<u32> = infty<int>;
template <> constexpr u64 infty<u64> = infty<i64>;
template <> constexpr u128 infty<u128> = infty<i128>;
template <> constexpr double infty<double> = infty<i64>;
template <> constexpr long double infty<long double> = infty<i64>;

constexpr int mod = 998244353;
constexpr int modu = 1e9 + 7;
constexpr long double PI = 3.14159265358979323846;

#endif // KK2_TEMPLATE_CONSTANT_HPP
#ifndef KK2_TEMPLATE_FUNCTION_UTIL_HPP
#define KK2_TEMPLATE_FUNCTION_UTIL_HPP 1


#ifndef KK2_MATH_MONOID_MAX_HPP
#define KK2_MATH_MONOID_MAX_HPP 1


#ifndef KK2_TYPE_TRAITS_IO_HPP
#define KK2_TYPE_TRAITS_IO_HPP 1



namespace kk2 {

namespace type_traits {

struct istream_tag {};
struct ostream_tag {};

} // namespace type_traits

template <typename T> using is_standard_istream =
    typename std::conditional<std::is_same<T, std::istream>::value
                                  || std::is_same<T, std::ifstream>::value,
                              std::true_type,
                              std::false_type>::type;
template <typename T> using is_standard_ostream =
    typename std::conditional<std::is_same<T, std::ostream>::value
                                  || std::is_same<T, std::ofstream>::value,
                              std::true_type,
                              std::false_type>::type;
template <typename T> using is_user_defined_istream = std::is_base_of<type_traits::istream_tag, T>;
template <typename T> using is_user_defined_ostream = std::is_base_of<type_traits::ostream_tag, T>;

template <typename T> using is_istream =
    typename std::conditional<is_standard_istream<T>::value || is_user_defined_istream<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_ostream =
    typename std::conditional<is_standard_ostream<T>::value || is_user_defined_ostream<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_istream_t = std::enable_if_t<is_istream<T>::value>;
template <typename T> using is_ostream_t = std::enable_if_t<is_ostream<T>::value>;

} // namespace kk2

#endif // KK2_TYPE_TRAITS_IO_HPP

namespace kk2 {

namespace monoid {

template <class S, class Compare = std::less<S>> struct Max {
    static constexpr bool commutative = true;
    using M = Max;
    S a;
    bool is_unit;

    Max() : a(S()), is_unit(true) {}
    Max(S a_) : a(a_), is_unit(false) {}
    operator S() const { return a; }

    inline static M op(M l, M r) {
        if (l.is_unit or r.is_unit) return l.is_unit ? r : l;
        return Compare{}(l.a, r.a) ? r : l;
    }

    inline static M unit() { return M(); }

    bool operator==(const M &rhs) const {
        return is_unit == rhs.is_unit and (is_unit or a == rhs.a);
    }

    bool operator!=(const M &rhs) const {
        return is_unit != rhs.is_unit or (!is_unit and a != rhs.a);
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    friend OStream &operator<<(OStream &os, const M &x) {
        if (x.is_unit) os << "-inf";
        else os << x.a;
        return os;
    }

    template <class IStream, is_istream_t<IStream> * = nullptr>
    friend IStream &operator>>(IStream &is, M &x) {
        is >> x.a;
        x.is_unit = false;
        return is;
    }
};

} // namespace monoid

} // namespace kk2

#endif // MATH_MONOID_MAX_HPP
#ifndef KK2_MATH_MONOID_MIN_HPP
#define KK2_MATH_MONOID_MIN_HPP 1



namespace kk2 {

namespace monoid {

template <class S, class Compare = std::less<S>> struct Min {
    static constexpr bool commutative = true;
    using M = Min;
    S a;
    bool is_unit;

    Min() : a(S()), is_unit(true) {}
    Min(S a_) : a(a_), is_unit(false) {}
    operator S() const { return a; }

    inline static M op(M l, M r) {
        if (l.is_unit or r.is_unit) return l.is_unit ? r : l;
        return Compare{}(l.a, r.a) ? l : r;
    }

    inline static M unit() { return M(); }

    bool operator==(const M &rhs) const {
        return is_unit == rhs.is_unit and (is_unit or a == rhs.a);
    }

    bool operator!=(const M &rhs) const {
        return is_unit != rhs.is_unit or (!is_unit and a != rhs.a);
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    friend OStream &operator<<(OStream &os, const M &x) {
        if (x.is_unit) os << "inf";
        else os << x.a;
        return os;
    }

    template <class IStream, is_istream_t<IStream> * = nullptr>
    friend IStream &operator>>(IStream &is, M &x) {
        is >> x.a;
        x.is_unit = false;
        return is;
    }
};

} // namespace monoid

} // namespace kk2

#endif // KK2_MATH_MONOID_MIN_HPP
#ifndef KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP
#define KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP 1



namespace kk2 {

template <typename T> struct is_vector : std::false_type {};
template <typename T, typename Alloc> struct is_vector<std::vector<T, Alloc>> : std::true_type {};

// コンテナかどうかを判定するtraits
template <typename T> struct is_container : std::false_type {};

// 基本的なコンテナ型の特殊化
template <typename T, typename Alloc> struct is_container<std::vector<T, Alloc>> : std::true_type {
};

template <typename CharT, typename Traits, typename Alloc>
struct is_container<std::basic_string<CharT, Traits, Alloc>> : std::true_type {};

template <typename T, std::size_t N> struct is_container<std::array<T, N>> : std::true_type {};

template <typename T, typename Alloc> struct is_container<std::deque<T, Alloc>> : std::true_type {};

template <typename T, typename Alloc> struct is_container<std::list<T, Alloc>> : std::true_type {};

// SFINAEでコンテナを判定するためのヘルパー
template <typename T> using is_container_t =
    typename std::enable_if_t<is_container<T>::value, std::nullptr_t>;

} // namespace kk2

#endif // KK2_TYPE_TRAITS_CONTAINER_TRAITS_HPP

namespace kk2 {

template <class T, class... Sizes> auto make_vector(int first, Sizes... sizes) {
    if constexpr (sizeof...(sizes) == 0) {
        return std::vector<T>(first);
    } else {
        return std::vector<decltype(make_vector<T>(sizes...))>(first, make_vector<T>(sizes...));
    }
}

template <class T, class U> void fill_all(std::vector<T> &v, const U &x) {
    if constexpr (is_vector<T>::value) {
        for (auto &u : v) fill_all(u, x);
    } else {
        std::fill(v.begin(), v.end(), T(x));
    }
}

template <class T, class U> int iota_all(std::vector<T> &v, U x, int offset = 0) {
    if constexpr (is_vector<T>::value) {
        for (auto &u : v) offset += iota_all(u, x + offset);
    } else {
        for (auto &u : v) u = x++, ++offset;
    }
    return offset;
}

template <class C> int mysize(const C &c) { return size(c); }


// T: commutative monoid, F: (U, T) -> U
template <class U, class T, class F>
U all_monoid_prod(const std::vector<T> &v, U unit, const F &f) {
    U res = unit;
    if constexpr (is_vector<T>::value) {
        for (const auto &x : v) res = f(res, all_monoid_prod(x, unit, f));
    } else {
        for (const auto &x : v) res = f(res, x);
    }
    return res;
}

template <class U, class T> U all_sum(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a + b; });
}
template <class U, class T> U all_prod(const std::vector<T> &v, U unit = U(1)) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a * b; });
}
template <class U, class T> U all_xor(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a ^ b; });
}
template <class U, class T> U all_and(const std::vector<T> &v, U unit = U(-1)) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a & b; });
}
template <class U, class T> U all_or(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return a | b; });
}
template <class U, class T> U all_min(const std::vector<T> &v) {
    return all_monoid_prod<monoid::Min<U>, T>(v, monoid::Min<U>::unit(), monoid::Min<U>::op);
}
template <class U, class T> U all_max(const std::vector<T> &v) {
    return all_monoid_prod<monoid::Max<U>, T>(v, monoid::Max<U>::unit(), monoid::Max<U>::op);
}
template <class U, class T> U all_gcd(const std::vector<T> &v, U unit = U()) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return std::gcd(a, b); });
}
template <class U, class T> U all_lcm(const std::vector<T> &v, U unit = U(1)) {
    return all_monoid_prod<U, T>(v, unit, [](U a, U b) { return std::lcm(a, b); });
}

} // namespace kk2

#endif // KK2_TEMPLATE_FUNCTION_UTIL_HPP
#ifndef KK2_TEMPLATE_IO_UTIL_HPP
#define KK2_TEMPLATE_IO_UTIL_HPP 1



// なんかoj verifyはプロトタイプ宣言が落ちる

namespace impl {

struct read {
    template <class IStream, class T> inline static void all_read(IStream &is, T &x) { is >> x; }

    template <class IStream, class T, class U>
    inline static void all_read(IStream &is, std::pair<T, U> &p) {
        all_read(is, p.first);
        all_read(is, p.second);
    }

    template <class IStream, class T> inline static void all_read(IStream &is, std::vector<T> &v) {
        for (T &x : v) all_read(is, x);
    }

    template <class IStream, class T, size_t F>
    inline static void all_read(IStream &is, std::array<T, F> &a) {
        for (T &x : a) all_read(is, x);
    }
};

struct write {
    template <class OStream, class T> inline static void all_write(OStream &os, const T &x) {
        os << x;
    }

    template <class OStream, class T, class U>
    inline static void all_write(OStream &os, const std::pair<T, U> &p) {
        all_write(os, p.first);
        all_write(os, ' ');
        all_write(os, p.second);
    }

    template <class OStream, class T>
    inline static void all_write(OStream &os, const std::vector<T> &v) {
        for (int i = 0; i < (int)v.size(); ++i) {
            if (i) all_write(os, ' ');
            all_write(os, v[i]);
        }
    }

    template <class OStream, class T, size_t F>
    inline static void all_write(OStream &os, const std::array<T, F> &a) {
        for (int i = 0; i < (int)F; ++i) {
            if (i) all_write(os, ' ');
            all_write(os, a[i]);
        }
    }
};

} // namespace impl

template <class IStream, class T, class U, kk2::is_istream_t<IStream> * = nullptr>
IStream &operator>>(IStream &is, std::pair<T, U> &p) {
    impl::read::all_read(is, p);
    return is;
}

template <class IStream, class T, kk2::is_istream_t<IStream> * = nullptr>
IStream &operator>>(IStream &is, std::vector<T> &v) {
    impl::read::all_read(is, v);
    return is;
}

template <class IStream, class T, size_t F, kk2::is_istream_t<IStream> * = nullptr>
IStream &operator>>(IStream &is, std::array<T, F> &a) {
    impl::read::all_read(is, a);
    return is;
}

template <class OStream, class T, class U, kk2::is_ostream_t<OStream> * = nullptr>
OStream &operator<<(OStream &os, const std::pair<T, U> &p) {
    impl::write::all_write(os, p);
    return os;
}

template <class OStream, class T, kk2::is_ostream_t<OStream> * = nullptr>
OStream &operator<<(OStream &os, const std::vector<T> &v) {
    impl::write::all_write(os, v);
    return os;
}

template <class OStream, class T, size_t F, kk2::is_ostream_t<OStream> * = nullptr>
OStream &operator<<(OStream &os, const std::array<T, F> &a) {
    impl::write::all_write(os, a);
    return os;
}

#endif // KK2_TEMPLATE_IO_UTIL_HPP
#ifndef KK2_TEMPLATE_MACROS_HPP
#define KK2_TEMPLATE_MACROS_HPP 1

#define rep1(a) for (long long _ = 0; _ < (long long)(a); ++_)
#define rep2(i, a) for (long long i = 0; i < (long long)(a); ++i)
#define rep3(i, a, b) for (long long i = (a); i < (long long)(b); ++i)
#define repi2(i, a) for (long long i = (a) - 1; i >= 0; --i)
#define repi3(i, a, b) for (long long i = (a) - 1; i >= (long long)(b); --i)
#define overload3(a, b, c, d, ...) d
#define rep(...) overload3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define repi(...) overload3(__VA_ARGS__, repi3, repi2, rep1)(__VA_ARGS__)

#define fi first
#define se second
#define all(p) begin(p), end(p)

#endif // KK2_TEMPLATE_MACROS_HPP

struct FastIOSetUp {
    FastIOSetUp() {
        std::ios::sync_with_stdio(false);
        std::cin.tie(nullptr);
    }
} fast_io_set_up;

auto &kin = std::cin;
auto &kout = std::cout;
auto (*kendl)(std::ostream &) = std::endl<char, std::char_traits<char>>;

void Yes(bool b = 1) { kout << (b ? "Yes\n" : "No\n"); }
void No(bool b = 1) { kout << (b ? "No\n" : "Yes\n"); }
void YES(bool b = 1) { kout << (b ? "YES\n" : "NO\n"); }
void NO(bool b = 1) { kout << (b ? "NO\n" : "YES\n"); }
void yes(bool b = 1) { kout << (b ? "yes\n" : "no\n"); }
void no(bool b = 1) { kout << (b ? "no\n" : "yes\n"); }
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }

std::istream &operator>>(std::istream &is, u128 &x) {
    std::string s;
    is >> s;
    x = 0;
    for (char c : s) {
        assert('0' <= c && c <= '9');
        x = x * 10 + c - '0';
    }
    return is;
}

std::istream &operator>>(std::istream &is, i128 &x) {
    std::string s;
    is >> s;
    bool neg = s[0] == '-';
    x = 0;
    for (int i = neg; i < (int)s.size(); i++) {
        assert('0' <= s[i] && s[i] <= '9');
        x = x * 10 + s[i] - '0';
    }
    if (neg) x = -x;
    return is;
}

std::ostream &operator<<(std::ostream &os, u128 x) {
    if (x == 0) return os << '0';
    std::string s;
    while (x) {
        s.push_back('0' + x % 10);
        x /= 10;
    }
    std::reverse(s.begin(), s.end());
    return os << s;
}

std::ostream &operator<<(std::ostream &os, i128 x) {
    if (x == 0) return os << '0';
    if (x < 0) {
        os << '-';
        x = -x;
    }
    std::string s;
    while (x) {
        s.push_back('0' + x % 10);
        x /= 10;
    }
    std::reverse(s.begin(), s.end());
    return os << s;
}

#endif // KK2_TEMPLATE_PROCON_HPP
#ifndef KK2_TEMPLATE_DEBUG_HPP
#define KK2_TEMPLATE_DEBUG_HPP 1


#ifndef KK2_TYPE_TRAITS_MEMBER_HPP
#define KK2_TYPE_TRAITS_MEMBER_HPP 1



namespace kk2 {

#define HAS_MEMBER_FUNC(member)                                                                    \
    template <typename T, typename... Ts> struct has_member_func_##member##_impl {                 \
        template <typename U>                                                                      \
        static std::true_type check(decltype(std::declval<U>().member(std::declval<Ts>()...)) *);  \
        template <typename U> static std::false_type check(...);                                   \
        using type = decltype(check<T>(nullptr));                                                  \
    };                                                                                             \
    template <typename T, typename... Ts> struct has_member_func_##member                          \
        : has_member_func_##member##_impl<T, Ts...>::type {};                                      \
    template <typename T, typename... Ts> using has_member_func_##member##_t =                     \
        std::enable_if_t<has_member_func_##member<T, Ts...>::value>;                               \
    template <typename T, typename... Ts> using not_has_member_func_##member##_t =                 \
        std::enable_if_t<!has_member_func_##member<T, Ts...>::value>;

#define HAS_MEMBER_VAR(member)                                                                     \
    template <typename T> struct has_member_var_##member##_impl {                                  \
        template <typename U> static std::true_type check(decltype(std::declval<U>().member) *);   \
        template <typename U> static std::false_type check(...);                                   \
        using type = decltype(check<T>(nullptr));                                                  \
    };                                                                                             \
    template <typename T> struct has_member_var_##member                                           \
        : has_member_var_##member##_impl<T>::type {};                                              \
    template <typename T> using has_member_var_##member##_t =                                      \
        std::enable_if_t<has_member_var_##member<T>::value>;                                       \
    template <typename T> using not_has_member_var_##member##_t =                                  \
        std::enable_if_t<!has_member_var_##member<T>::value>;

HAS_MEMBER_FUNC(debug_output)
HAS_MEMBER_FUNC(val)


#undef HAS_MEMBER_FUNC
#undef HAS_MEMBER_VAR
} // namespace kk2

#endif // KK2_TYPE_TRAITS_MEMBER_HPP

namespace kk2 {

namespace debug {

#ifdef KK2

template <class OStream, is_ostream_t<OStream> *> void output(OStream &os);
template <class OStream, class T, is_ostream_t<OStream> *> void output(OStream &os, const T &t);
template <class OStream, class T, is_ostream_t<OStream> *>
void output(OStream &os, const std::vector<T> &v);
template <class OStream, class T, is_ostream_t<OStream> *>
void output(OStream &os, const std::vector<std::vector<T>> &d);
template <class OStream, class T, size_t F, is_ostream_t<OStream> *>
void output(OStream &os, const std::array<T, F> &a);
template <class OStream, class T, class U, is_ostream_t<OStream> *>
void output(OStream &os, const std::pair<T, U> &p);
template <class OStream, class T, is_ostream_t<OStream> *>
void output(OStream &os, const std::queue<T> &q);
template <class OStream, class T, class Container, class Compare, is_ostream_t<OStream> *>
void output(OStream &os, const std::priority_queue<T, Container, Compare> &q);
template <class OStream, class T, is_ostream_t<OStream> *>
void output(OStream &os, const std::deque<T> &d);
template <class OStream, class T, is_ostream_t<OStream> *>
void output(OStream &os, const std::stack<T> &s);
template <class OStream, class Key, class Compare, class Allocator, is_ostream_t<OStream> *>
void output(OStream &os, const std::set<Key, Compare, Allocator> &s);
template <class OStream, class Key, class Compare, class Allocator, is_ostream_t<OStream> *>
void output(OStream &os, const std::multiset<Key, Compare, Allocator> &s);
template <class OStream,
          class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          is_ostream_t<OStream> *>
void output(OStream &os, const std::unordered_set<Key, Hash, KeyEqual, Allocator> &s);
template <class OStream,
          class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          is_ostream_t<OStream> *>
void output(OStream &os, const std::unordered_multiset<Key, Hash, KeyEqual, Allocator> &s);
template <class OStream,
          class Key,
          class T,
          class Compare,
          class Allocator,
          is_ostream_t<OStream> *>
void output(OStream &os, const std::map<Key, T, Compare, Allocator> &m);
template <class OStream,
          class Key,
          class T,
          class Hash,
          class KeyEqual,
          class Allocator,
          is_ostream_t<OStream> *>
void output(OStream &os, const std::unordered_map<Key, T, Hash, KeyEqual, Allocator> &m);
template <class OStream, is_ostream_t<OStream> * = nullptr> void output(OStream &) {}

template <class OStream, class T, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const T &t) {
    if constexpr (has_member_func_debug_output<T, OStream &>::value) {
        t.debug_output(os);
    } else {
        os << t;
    }
}

template <class OStream, class T, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::vector<T> &v) {
    os << "[";
    for (int i = 0; i < (int)v.size(); i++) {
        output(os, v[i]);
        if (i + 1 != (int)v.size()) os << ", ";
    }
    os << "]";
}

template <class OStream, class T, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::vector<std::vector<T>> &d) {
    os << "[\n";
    for (int i = 0; i < (int)d.size(); i++) {
        output(os, d[i]);
        output(os, "\n");
    }
    os << "]";
}

template <class OStream, class T, size_t F, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::array<T, F> &a) {
    os << "[";
    for (int i = 0; i < (int)F; i++) {
        output(os, a[i]);
        if (i + 1 != (int)F) os << ", ";
    }
    os << "]";
}

template <class OStream, class T, class U, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::pair<T, U> &p) {
    os << "(";
    output(os, p.first);
    os << ", ";
    output(os, p.second);
    os << ")";
}

template <class OStream, class T, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::queue<T> &q) {
    os << "[";
    std::queue<T> tmp = q;
    while (!tmp.empty()) {
        output(os, tmp.front());
        tmp.pop();
        if (!tmp.empty()) os << ", ";
    }
    os << "]";
}

template <class OStream, class T, class Container, class Compare, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::priority_queue<T, Container, Compare> &q) {
    os << "[";
    std::priority_queue<T, Container, Compare> tmp = q;
    while (!tmp.empty()) {
        output(os, tmp.top());
        tmp.pop();
        if (!tmp.empty()) os << ", ";
    }
    os << "]";
}

template <class OStream, class T, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::deque<T> &d) {
    os << "[";
    std::deque<T> tmp = d;
    while (!tmp.empty()) {
        output(os, tmp.front());
        tmp.pop_front();
        if (!tmp.empty()) os << ", ";
    }
    os << "]";
}

template <class OStream, class T, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::stack<T> &s) {
    os << "[";
    std::stack<T> tmp = s;
    std::vector<T> v;
    while (!tmp.empty()) {
        v.push_back(tmp.top());
        tmp.pop();
    }
    for (int i = (int)v.size() - 1; i >= 0; i--) {
        output(os, v[i]);
        if (i != 0) os << ", ";
    }
    os << "]";
}

template <class OStream,
          class Key,
          class Compare,
          class Allocator,
          is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::set<Key, Compare, Allocator> &s) {
    os << "{";
    std::set<Key, Compare, Allocator> tmp = s;
    for (auto it = tmp.begin(); it != tmp.end(); ++it) {
        output(os, *it);
        if (std::next(it) != tmp.end()) os << ", ";
    }
    os << "}";
}

template <class OStream,
          class Key,
          class Compare,
          class Allocator,
          is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::multiset<Key, Compare, Allocator> &s) {
    os << "{";
    std::multiset<Key, Compare, Allocator> tmp = s;
    for (auto it = tmp.begin(); it != tmp.end(); ++it) {
        output(os, *it);
        if (std::next(it) != tmp.end()) os << ", ";
    }
    os << "}";
}

template <class OStream,
          class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::unordered_set<Key, Hash, KeyEqual, Allocator> &s) {
    os << "{";
    std::unordered_set<Key, Hash, KeyEqual, Allocator> tmp = s;
    for (auto it = tmp.begin(); it != tmp.end(); ++it) {
        output(os, *it);
        if (std::next(it) != tmp.end()) os << ", ";
    }
    os << "}";
}

template <class OStream,
          class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::unordered_multiset<Key, Hash, KeyEqual, Allocator> &s) {
    os << "{";
    std::unordered_multiset<Key, Hash, KeyEqual, Allocator> tmp = s;
    for (auto it = tmp.begin(); it != tmp.end(); ++it) {
        output(os, *it);
        if (std::next(it) != tmp.end()) os << ", ";
    }
    os << "}";
}

template <class OStream,
          class Key,
          class T,
          class Compare,
          class Allocator,
          is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::map<Key, T, Compare, Allocator> &m) {
    os << "{";
    std::map<Key, T, Compare, Allocator> tmp = m;
    for (auto it = tmp.begin(); it != tmp.end(); ++it) {
        output(os, it->first);
        os << ": ";
        output(os, it->second);
        if (std::next(it) != tmp.end()) os << ", ";
    }
    os << "}";
}

template <class OStream,
          class Key,
          class T,
          class Hash,
          class KeyEqual,
          class Allocator,
          is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const std::unordered_map<Key, T, Hash, KeyEqual, Allocator> &m) {
    os << "{";
    std::unordered_map<Key, T, Hash, KeyEqual, Allocator> tmp = m;
    for (auto it = tmp.begin(); it != tmp.end(); ++it) {
        output(os, it->first);
        os << ": ";
        output(os, it->second);
        if (std::next(it) != tmp.end()) os << ", ";
    }
    os << "}";
}

template <class OStream, class T, class... Args, is_ostream_t<OStream> * = nullptr>
void output(OStream &os, const T &t, const Args &...args) {
    output(os, t);
    os << ' ';
    output(os, args...);
}

template <class OStream, is_ostream_t<OStream> * = nullptr> void outputln(OStream &os) {
    os << '\n';
    os.flush();
}

template <class OStream, class T, class... Args, is_ostream_t<OStream> * = nullptr>
void outputln(OStream &os, const T &t, const Args &...args) {
    output(os, t, args...);
    os << '\n';
    os.flush();
}

std::vector<std::string> sep(const char *s) {
    std::vector<std::string> res;
    std::string now;
    int dep = 0;
    while (true) {
        if (*s == '\0') {
            res.emplace_back(now);
            break;
        }
        if (*s == '(' or *s == '[' or *s == '{') dep++;
        if (*s == ')' or *s == ']' or *s == '}') dep--;
        if (dep == 0 and *s == ',') {
            res.emplace_back(now);
            now.clear();
        } else if (!isspace(*s)) {
            now += *s;
        }
        s++;
    }
    return res;
}

void show_vars(const std::vector<std::string> &, int) {}

template <class T, class... Args>
void show_vars(const std::vector<std::string> &name, int pos, const T &t, const Args &...args) {
    // assert(pos < (int)name.size());
    output(std::cerr, name[pos++] + ":", t);
    if (sizeof...(args) > 0) output(std::cerr, ", ");
    show_vars(name, pos, args...);
}

#define kdebug(...)                                                                                \
    std::cerr << "line:" << __LINE__ << ' ';                                                       \
    kk2::debug::show_vars(kk2::debug::sep(#__VA_ARGS__), 0, __VA_ARGS__);                          \
    std::cerr << std::endl;

#define kput(s)                                                                                    \
    std::cerr << "line:" << __LINE__ << ' ';                                                       \
    kk2::debug::outputln(std::cerr, s);

#else

template <class OStream, class... Args, is_ostream_t<OStream> * = nullptr>
void output(OStream &, const Args &...) {}

template <class OStream, class... Args, is_ostream_t<OStream> * = nullptr>
void outputln(OStream &, const Args &...) {}

template <class... Args> void fix_warn(const Args &...) {}

#define kdebug(...) kk2::debug::fix_warn(__VA_ARGS__);

#define kput(s) kk2::debug::fix_warn(s)

#endif // KK2

} // namespace debug

} // namespace kk2

#endif // KK2_TEMPLATE_DEBUG_HPP
#ifndef KK2_MODINT_MONT_HPP
#define KK2_MODINT_MONT_HPP 1


#ifndef KK2_TYPE_TRAITS_INTERGRAL_HPP
#define KK2_TYPE_TRAITS_INTERGRAL_HPP 1



namespace kk2 {

#ifndef _MSC_VER

template <typename T> using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value
                                  or std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value
                                  or std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_integral =
    typename std::conditional<std::is_integral<T>::value or is_signed_int128<T>::value
                                  or is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_signed =
    typename std::conditional<std::is_signed<T>::value or is_signed_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using is_unsigned =
    typename std::conditional<std::is_unsigned<T>::value or is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <typename T> using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

template <typename T> using to_unsigned =
    typename std::conditional<is_signed_int128<T>::value,
                              make_unsigned_int128<T>,
                              typename std::conditional<std::is_signed<T>::value,
                                                        std::make_unsigned<T>,
                                                        std::common_type<T>>::type>::type;

#else

template <typename T> using is_integral = std::enable_if_t<std::is_integral<T>::value>;
template <typename T> using is_signed = std::enable_if_t<std::is_signed<T>::value>;
template <typename T> using is_unsigned = std::enable_if_t<std::is_unsigned<T>::value>;
template <typename T> using to_unsigned = std::make_unsigned<T>;

#endif // _MSC_VER

template <typename T> using is_integral_t = std::enable_if_t<is_integral<T>::value>;
template <typename T> using is_signed_t = std::enable_if_t<is_signed<T>::value>;
template <typename T> using is_unsigned_t = std::enable_if_t<is_unsigned<T>::value>;

} // namespace kk2

#endif // KK2_TYPE_TRAITS_INTERGRAL_HPP

namespace kk2 {

template <int p> struct LazyMontgomeryModInt {
    using mint = LazyMontgomeryModInt;
    using i32 = int32_t;
    using i64 = int64_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static constexpr u32 get_r() {
        u32 ret = p;
        for (int i = 0; i < 4; ++i) ret *= 2 - p * ret;
        return ret;
    }

    static constexpr u32 r = get_r();
    static constexpr u32 n2 = -u64(p) % p;
    static_assert(r * p == 1, "invalid, r * p != 1");
    static_assert(p < (1 << 30), "invalid, p >= 2 ^ 30");
    static_assert((p & 1) == 1, "invalid, p % 2 == 0");

    u32 _v;

    constexpr LazyMontgomeryModInt() : _v(0) {}

    template <typename T, is_integral_t<T> * = nullptr> constexpr LazyMontgomeryModInt(T b)
        : _v(reduce(u64(b % p + p) * n2)) {}

    static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * p) >> 32; }
    constexpr mint &operator++() { return *this += 1; }
    constexpr mint &operator--() { return *this -= 1; }

    constexpr mint operator++(int) {
        mint ret = *this;
        *this += 1;
        return ret;
    }

    constexpr mint operator--(int) {
        mint ret = *this;
        *this -= 1;
        return ret;
    }

    constexpr mint &operator+=(const mint &b) {
        if (i32(_v += b._v - 2 * p) < 0) _v += 2 * p;
        return *this;
    }

    constexpr mint &operator-=(const mint &b) {
        if (i32(_v -= b._v) < 0) _v += 2 * p;
        return *this;
    }

    constexpr mint &operator*=(const mint &b) {
        _v = reduce(u64(_v) * b._v);
        return *this;
    }

    constexpr mint &operator/=(const mint &b) {
        *this *= b.inv();
        return *this;
    }


    constexpr bool operator==(const mint &b) const {
        return (_v >= p ? _v - p : _v) == (b._v >= p ? b._v - p : b._v);
    }

    constexpr bool operator!=(const mint &b) const {
        return (_v >= p ? _v - p : _v) != (b._v >= p ? b._v - p : b._v);
    }

    constexpr mint operator-() const { return mint() - mint(*this); }
    constexpr mint operator+() const { return mint(*this); }
    friend constexpr mint operator+(const mint &a, const mint &b) { return mint(a) += b; }
    friend constexpr mint operator-(const mint &a, const mint &b) { return mint(a) -= b; }
    friend constexpr mint operator*(const mint &a, const mint &b) { return mint(a) *= b; }
    friend constexpr mint operator/(const mint &a, const mint &b) { return mint(a) /= b; }

    template <class T> constexpr mint pow(T n) const {
        mint ret(1), mul(*this);
        while (n > 0) {
            if (n & 1) ret *= mul;
            if (n >>= 1) mul *= mul;
        }
        return ret;
    }

    constexpr mint inv() const {
        assert(*this != mint(0));
        return pow(p - 2);
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    friend OStream &operator<<(OStream &os, const mint &x) {
        return os << x.val();
    }

    template <class IStream, is_istream_t<IStream> * = nullptr>
    friend IStream &operator>>(IStream &is, mint &x) {
        i64 t;
        is >> t;
        x = mint(t);
        return (is);
    }

    constexpr u32 val() const {
        u32 ret = reduce(_v);
        return ret >= p ? ret - p : ret;
    }

    static constexpr u32 getmod() { return p; }
};

template <int p> using Mont = LazyMontgomeryModInt<p>;

using mont998 = Mont<998244353>;
using mont107 = Mont<1000000007>;

} // namespace kk2

#endif // KK2_MODINT_MONT_HPP
#ifndef KK2_MATRIX_MATRIX_FIELD_HPP
#define KK2_MATRIX_MATRIX_FIELD_HPP 1



namespace kk2 {

/**
 * @brief 行列
 *
 * @tparam Field invメンバが必要
 */
template <class Field> struct MatrixField {
    using value_type = Field;
    using mat = MatrixField;
    int _h, _w;
    std::vector<std::vector<Field>> _mat;

    MatrixField() : MatrixField(0) {}
    MatrixField(int n) : MatrixField(n, n) {}

    MatrixField(int h, int w) {
        if (h == 0) {
            _h = 0;
            _w = w;
        } else {
            _h = h;
            _w = w;
            _mat.resize(h, std::vector<Field>(w));
        }
    }

    MatrixField(const std::vector<std::vector<Field>> &mat_)
        : _h(mat_.size()),
          _w(mat_[0].size()),
          _mat(mat_) {}

    static mat unit(int n) {
        mat res(n, n);
        for (int i = 0; i < n; i++) res[i][i] = Field(1);
        return res;
    }

    inline int get_h() const { return _h; }

    inline int get_w() const { return _w; }

    std::vector<Field> &operator[](int i) {
        assert(0 <= i && i < _h);
        return _mat[i];
    }

    const std::vector<Field> &operator[](int i) const {
        assert(0 <= i && i < _h);
        return _mat[i];
    }

    template <class IStream, is_istream_t<IStream> * = nullptr> mat &input(IStream &is) {
        for (int i = 0; i < _h; i++) {
            for (int j = 0; j < _w; j++) { is >> _mat[i][j]; }
        }
        return *this;
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr> void output(OStream &os) const {
        for (int i = 0; i < _h; i++) {
            for (int j = 0; j < _w; j++) os << _mat[i][j] << " \n"[j == _w - 1];
        }
    }

    template <class OStream, is_ostream_t<OStream> * = nullptr>
    void debug_output(OStream &os) const {
        os << "(h, w): " << "(" << _h << ", " << _w << "), [\n";
        for (int i = 0; i < _h; i++) {
            os << "  [ ";
            for (int j = 0; j < _w; j++) os << _mat[i][j] << " ";
            os << "]\n";
        }
        os << "]\n";
    }

    mat &operator+=(const mat &rhs) {
        assert(_h == rhs._h);
        assert(_w == rhs._w);
        for (int i = 0; i < _h; i++) {
            for (int j = 0; j < _w; j++) { _mat[i][j] += rhs._mat[i][j]; }
        }
        return *this;
    }

    mat &operator-=(const mat &rhs) {
        assert(_h == rhs._h);
        assert(_w == rhs._w);
        for (int i = 0; i < _h; i++) {
            for (int j = 0; j < _w; j++) { _mat[i][j] -= rhs._mat[i][j]; }
        }
        return *this;
    }

    mat &operator*=(const mat &rhs) {
        assert(_w == rhs._h);
        std::vector<std::vector<Field>> res(_h, std::vector<Field>(rhs._w, Field()));
        for (int i = 0; i < _h; i++) {
            for (int k = 0; k < _w; k++) {
                for (int j = 0; j < rhs._w; j++) { res[i][j] += _mat[i][k] * rhs._mat[k][j]; }
            }
        }
        _w = rhs._w;
        _mat = std::move(res);
        return *this;
    }

    /**
     * @brief 掃き出し
     * @tparam RREF 行簡約化行列にするかどうか
     * @tparam EARLY_TERMINATE フルランクでないことが確定したときに即打ち切るかどうか
     * @param wr 列が[0, wr)の範囲だけで掃き出す.指定がないなら全体で掃き出す.
     * @return ランクと行列式を返す.
     */
    template <bool RREF = true, bool EARLY_TERMINATE = false>
    std::pair<int, Field> sweep(int wr = -1) {
        if (wr == -1) wr = _w;
        int r = 0;
        Field det = 1;
        for (int i = 0; i < wr; ++i) {
            if (r >= _h) break;
            int pivot = r;
            while (pivot < _h and _mat[pivot][i] == Field(0)) ++pivot;
            if (pivot == _h) {
                if constexpr (EARLY_TERMINATE) return {-1, Field(0)};
                det = 0;
                continue;
            }
            if (r != pivot) {
                det = -det;
                std::swap(_mat[r], _mat[pivot]);
            }
            det *= _mat[r][i];
            Field inv = _mat[r][i].inv();
            for (int j = i; j < wr; ++j) _mat[r][j] *= inv;
            for (int j = RREF ? 0 : r + 1; j < _h; ++j) {
                if (j == r) continue;
                Field a = _mat[j][i];
                if (a == Field(0)) continue;
                for (int k = i; k < wr; ++k) { _mat[j][k] -= _mat[r][k] * a; }
            }
            r++;
        }
        return {r, det};
    }

    mat &to_upper_Hessenberg() {
        assert(_h == _w);
        int n = _h;
        for (int i = 0; i < n - 1; ++i) {
            int pivot = i + 1;
            while (pivot < n and _mat[pivot][i] == Field(0)) ++pivot;
            if (pivot == n) continue;
            if (pivot != i + 1) {
                std::swap(_mat[pivot], _mat[i + 1]);
                for (int j = 0; j < n; ++j) std::swap(_mat[j][i + 1], _mat[j][pivot]);
            }
            if (_mat[i + 1][i] != Field(1)) {
                Field a = _mat[i + 1][i], iv = a.inv();
                for (int j = i; j < n; ++j) _mat[i + 1][j] *= iv;
                for (int j = 0; j < n; ++j) _mat[j][i + 1] *= a;
            }
            for (int j = i + 2; j < n; ++j) {
                Field a = _mat[j][i];
                if (a == Field(0)) continue;
                for (int k = i; k < n; ++k) _mat[j][k] -= _mat[i + 1][k] * a;
                for (int k = 0; k < n; ++k) _mat[k][i + 1] += _mat[k][j] * a;
            }
        }
        return *this;
    }

    Field det() const {
        assert(_h == _w);
        return mat(*this).sweep<false, true>().second;
    }

    std::optional<mat> inv() const {
        assert(_h == _w);
        int n = _h;
        mat res(*this);
        res.inplace_combine_right(mat::unit(n));
        int r = res.sweep<true, true>().first;
        if (r != n) return std::nullopt;
        for (int i = 0; i < n; i++) res._mat[i].erase(res[i].begin(), res[i].begin() + n);
        res._w = n;
        return res;
    }

    int rank() const { return mat(*this).sweep<false, false>().first; }

    mat &shrink() {
        while (_h and _mat.back() == std::vector<Field>(_w, Field())) _mat.pop_back(), _h--;
        return *this;
    }

    template <class T> mat pow(T n) const {
        assert(_h == _w);
        assert(n >= 0);
        mat mul(_mat), res = mat::unit(_h);
        while (n) {
            if (n & 1) res *= mul;
            if (n >>= 1) mul *= mul;
        }
        return res;
    }

    std::optional<mat> solve(const mat &b) const {
        assert(_h == b._h);
        assert(b._w == 1);
        mat ab = combine_right(b);
        int r = ab.sweep<true, false>().first;
        if ([&]() {
                if (!r) return false;
                for (int i = 0; i < _w; i++)
                    if (ab[r - 1][i] != Field()) return false;
                return true;
            }()) {
            return std::nullopt;
        }
        mat res(1 + _w - r, _w);
        std::vector<int> idx(_w, -1), step(r, -1);
        for (int i = 0, j = 0, now = 0; j < _w; j++) {
            if (i == r or ab[i][j] == Field(0)) idx[j] = now, res[1 + now++][j] = 1;
            else res[0][j] = ab[i].back(), step[i++] = j;
        }
        for (int i = 0; i < r; i++) {
            for (int j = 0; j < _w; j++) {
                if (idx[j] != -1) res[idx[j] + 1][step[i]] = -ab[i][j];
            }
        }
        return res;
    }

    mat &inplace_combine_top(const mat &rhs) {
        assert(_w == rhs._w);
        _mat.insert(_mat.begin(), rhs._mat.begin(), rhs._mat.end());
        _h += rhs._h;
        return *this;
    }

    mat &inplace_combine_bottom(const mat &rhs) {
        assert(_w == rhs._w);
        _mat.insert(_mat.end(), rhs._mat.begin(), rhs._mat.end());
        _h += rhs._h;
        return *this;
    }

    mat &inplace_combine_left(const mat &rhs) {
        assert(_h == rhs._h);
        for (int i = 0; i < _h; i++) _mat[i].insert(_mat[i].begin(), rhs[i].begin(), rhs[i].end());
        _w += rhs._w;
        return *this;
    }

    mat &inplace_combine_right(const mat &rhs) {
        assert(_h == rhs._h);
        for (int i = 0; i < _h; i++) _mat[i].insert(_mat[i].end(), rhs[i].begin(), rhs[i].end());
        _w += rhs._w;
        return *this;
    }

    mat transpose() const {
        mat res(_w, _h);
        for (int i = 0; i < _h; i++) {
            for (int j = 0; j < _w; j++) { res[j][i] = _mat[i][j]; }
        }
        return res;
    }

    mat combine_top(const mat &rhs) const { return mat(*this).inplace_combine_top(rhs); }
    mat combine_bottom(const mat &rhs) const { return mat(*this).inplace_combine_bottom(rhs); }
    mat combine_left(const mat &rhs) const { return mat(*this).inplace_combine_left(rhs); }
    mat combine_right(const mat &rhs) const { return mat(*this).inplace_combine_right(rhs); }
    mat &inplace_transpose() { return *this = transpose(); }
    friend mat operator+(const mat &lhs, const mat &rhs) { return mat(lhs) += rhs; }
    friend mat operator-(const mat &lhs, const mat &rhs) { return mat(lhs) -= rhs; }
    friend mat operator*(const mat &lhs, const mat &rhs) { return mat(lhs) *= rhs; }
    friend bool operator==(const mat &lhs, const mat &rhs) { return lhs._mat == rhs._mat; }
    friend bool operator!=(const mat &lhs, const mat &rhs) { return lhs._mat != rhs._mat; }
};

} // namespace kk2

#endif // KK2_MATRIX_MATRIX_FIELD_HPP
// #include <kk2/fps/fps_arb.hpp>
using namespace std;

void solve() {
    /*
    1, 0, 1, 0, ...
    0, 1, 0, 1, ...
    の長さの二乗の和

    外から0で始まっていると考えるてきな

    2, 1, 0乗和を持てば更新可能
    dp[i][j][k] = i文字目まで,j乗和の和,最後k

    result: 
    dp[|T|K][2][0] + dp[|T|K][2][1]

    s[i] = 0
    dp[i][2][0] = dp[i-1][2][0] + dp[i-1][2][1] + 2 * dp[i-1][1][1] + dp[i-1][0][1] + 1
    dp[i][1][0] = dp[i-1][1][0] + dp[i-1][1][1] + dp[i-1][0][1] + 1
    dp[i][0][0] = dp[i-1][0][0] + dp[i-1][0][1] + 1
    dp[i][*][1] = dp[i-1][*][1]
    s[i] = 1
    onaji

    |T|ごとに進むときは,アフィン変換になる
    */

    using mint = kk2::mont107;
    using mat = kk2::MatrixField<mint>;
    // using fps = kk2::FPSArb<mint>;

    string t;
    kin >> t;
    i64 k;
    kin >> k;

    mat A(6, 6), b(6, 1);
    A = mat::unit(6);
    rep (i, t.size()) {
        mat nA(6, 6), nb(6, 1);
        nA = mat::unit(6);
        if (t[i] == '0') {
            nA[4][5] = 1;
            nA[4][3] = 2;
            nA[4][1] = 1;
            nA[2][3] = 1;
            nA[2][1] = 1;
            nA[0][1] = 1;

            nb[4][0] = 1;
            nb[2][0] = 1;
            nb[0][0] = 1;
        } else {
            nA[5][4] = 1;
            nA[5][2] = 2;
            nA[5][0] = 1;
            nA[3][2] = 1;
            nA[3][0] = 1;
            nA[1][0] = 1;

            nb[5][0] = 1;
            nb[3][0] = 1;
            nb[1][0] = 1;
        }
        A = nA * A, b = nA * b + nb;
        kdebug(b);
    }
    kdebug(A);

    auto pow_sum = [](auto self, const mat& A, i64 l) {
        // A^{l-1} + ... + A^0
        if (l == 1) return mat::unit(A.get_h());
        mat tmp = (A.pow(l / 2) + mat::unit(A.get_h())) * self(self, A, l / 2);
        if (l & 1) tmp = A * tmp + mat::unit(A.get_h());
        return tmp;
    };
    // mat s = vvc<mint>{{1, 1}, {0, 1}};
    // kdebug(pow_sum(pow_sum, s, 1));
    // kdebug(pow_sum(pow_sum, s, 2));
    // kdebug(pow_sum(pow_sum, s, 3));
    // kdebug(pow_sum(pow_sum, s, 4));


    auto res = pow_sum(pow_sum, A, k) * b;
    kdebug(res);
    kout << res[4][0] + res[5][0] << "\n";
}

int main() {
#ifdef KK2
    int t = 2;
#else
    int t = 1;
#endif
    // kin >> t;
    rep (t) solve();

    return 0;
}
// Author: kk2
// converted by https://github.com/kk2a/cpp-bundle
// 2025-07-11 23:34:20
0