結果

問題 No.3202 Periodic Alternating Subsequence
ユーザー deuteridayo
提出日時 2025-07-12 00:16:09
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 239 ms / 2,000 ms
コード長 4,054 bytes
コンパイル時間 6,702 ms
コンパイル使用メモリ 333,176 KB
実行使用メモリ 7,844 KB
最終ジャッジ日時 2025-07-12 00:16:23
合計ジャッジ時間 12,601 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef MY_HEADER
#define MY_HEADER



#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
using namespace atcoder;
using lint = long long;
using ulint = unsigned long long;
using llint = __int128_t;
struct edge;
using graph = vector<vector<edge>>;
#define endl '\n'
constexpr int INF = 1<<30;
constexpr lint INF64 = 1LL<<61;
constexpr lint mod107 = 1e9+7;
constexpr long mod = 998244353;
using mint = modint1000000007;
lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}}
lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}}
lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;}
lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);}
lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;}
double Dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));}
lint DistSqr(lint x1, lint y1, lint x2, lint y2){return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); }
string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;}
string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;}
vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}}
lint Kai[20000001]; bool firstCallnCr = true; 
lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(r<0)return 0;
if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;}
#define rep(i, n) for(int i = 0; i < n; i++)
#define repp(i, x, y) for(int i = x; i < y; i++)
#define rrep(i, x) for(int i = x-1; i >= 0; i--)
#define vec vector
#define pb push_back
#define eb emplace_back
#define se second
#define fi first
#define al(x) x.begin(),x.end()
#define ral(x) x.rbegin(),x.rend()

struct edge{
    edge(lint v, lint c = 1) {to = v, cost = c;}
    lint to;
    lint cost;
};

#endif





int main(){
    string t;lint k;
    cin >> t >> k;

    vec M(2, vec(7, vec<mint>(7, 0)));
    rep(i, 2) {
        M[i][i][0] = 1;
        M[i][i][1] = 1;
        M[i][i][6] = 1;
        M[i][1-i][1-i] = 1;
        
        M[i][2+i][2+i] = 1;
        M[i][2+i][3-i] = 1;
        M[i][2+i][1-i] = 1;
        M[i][2+i][6] = 1;

        M[i][3-i][3-i] = 1;
        M[i][6][6] = 1;
        M[i][5-i][5-i] = 1;

        M[i][4+i][1-i] = 1;
        M[i][4+i][4+i] = 1;
        M[i][4+i][5-i] = 1;
        M[i][4+i][3-i] = 2;
        M[i][4+i][6] = 1;
    }

    vec<vec<mint>>Mt(7, vec<mint>(7, 0));
    rep(i, 7) Mt[i][i] = 1;

    for(char c: t) {
        vec<vec<mint>>tmp(7, vec<mint>(7, 0));
        int cc = c-'0';
        rep(i, 7) {
            rep(j, 7) {
                rep(k, 7) {
                    tmp[i][j] += Mt[i][k] * M[cc][k][j];
                }
            }
        }
        Mt = tmp;
    }

    vec Mp(60, vec(7, vec<mint>(7)));
    Mp[0] = Mt;
    rep(itr, 59) {
        rep(i, 7) {
            rep(j, 7) {
                rep(k, 7) {
                    Mp[itr+1][i][j] += Mp[itr][i][k] * Mp[itr][k][j];
                }
            }
        }
    }

    vec ans(7, vec<mint>(7));
    rep(i, 7) ans[i][i] = 1;

    rep(itr, 60) {
        if((1LL<<itr)&k) {
            vec<vec<mint>>tmp(7, vec<mint>(7, 0));
            rep(i, 7) {
                rep(j, 7) {
                    rep(k, 7) {
                        tmp[i][j] += ans[i][k] * Mp[itr][k][j];
                    }
                }
            }
            ans = tmp;
        }
    }
    cout << (ans[5][6] + ans[4][6]).val() << endl;

    


}

0