結果
問題 |
No.3182 recurrence relation’s intersection sum
|
ユーザー |
|
提出日時 | 2025-07-12 02:12:41 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,794 bytes |
コンパイル時間 | 473 ms |
コンパイル使用メモリ | 82,200 KB |
実行使用メモリ | 86,696 KB |
最終ジャッジ日時 | 2025-07-12 02:12:45 |
合計ジャッジ時間 | 4,198 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 TLE * 1 |
other | -- * 40 |
ソースコード
## https://yukicoder.me/problems/no/1645 MOD = 998244353 class CombinationCalculator: """ modを考慮したPermutation, Combinationを計算するためのクラス """ def __init__(self, size, mod): self.mod = mod self.factorial = [0] * (size + 1) self.factorial[0] = 1 for i in range(1, size + 1): self.factorial[i] = (i * self.factorial[i - 1]) % self.mod self.inv_factorial = [0] * (size + 1) self.inv_factorial[size] = pow(self.factorial[size], self.mod - 2, self.mod) for i in reversed(range(size)): self.inv_factorial[i] = ((i + 1) * self.inv_factorial[i + 1]) % self.mod def calc_combination(self, n, r): if n < 0 or n < r or r < 0: return 0 if r == 0 or n == r: return 1 ans = self.inv_factorial[n - r] * self.inv_factorial[r] ans %= self.mod ans *= self.factorial[n] ans %= self.mod return ans def calc_permutation(self, n, r): if n < 0 or n < r: return 0 ans = self.inv_factorial[n - r] ans *= self.factorial[n] ans %= self.mod return ans def prod_matrix(left, right): ans = [[0] * len(left) for _ in range(len(left))] for i in range(len(left)): for j in range(len(left)): for k in range(len(left)): ans[i][j] += (left[i][k] * right[k][j]) % MOD ans[i][j] %= MOD return ans def prod_vec(matrix, vec): new_vec = [0] * len(vec) for i in range(len(vec)): for j in range(len(vec)): new_vec[i] += (matrix[i][j] * vec[j]) % MOD new_vec[i] %= MOD return new_vec def solve(K, R, combi): S = [[0] * (K + 3) for _ in range(K + 3)] S[0][0] = K S[0][1] = 1 S[0][K + 2] = 1 for i in range(1, K + 2): for j in range(i, K + 2): S[i][j] = combi.calc_combination(K - (i - 1), j - i) S[K + 2][K + 2] = K T = [[0] * (2 * K + 6) for _ in range(2 * K + 6)] for i in range(K + 3): for j in range(K + 3): T[i][j] = S[i][j] for i in range(K + 3): T[i][i + K + 3] = 1 for i in range(K + 3): T[i + K + 3][i + K + 3] = 1 vec = [1] + ([0] * K) + [1, 1] vec = vec + vec while R > 0: if R % 2 == 1: new_vec = prod_vec(T, vec) vec = new_vec T = prod_matrix(T, T) R //= 2 return vec[0] def main(): K, L, R = map(int, input().split()) combi = CombinationCalculator(2 * K, MOD) ans = solve(K, R, combi) ans1 = 0 if L > 0: ans1 = solve(K, L - 1, combi) print((ans - ans1) % MOD) if __name__ == "__main__": main()