結果
| 問題 |
No.3182 recurrence relation’s intersection sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-12 02:12:41 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,794 bytes |
| コンパイル時間 | 473 ms |
| コンパイル使用メモリ | 82,200 KB |
| 実行使用メモリ | 86,696 KB |
| 最終ジャッジ日時 | 2025-07-12 02:12:45 |
| 合計ジャッジ時間 | 4,198 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 TLE * 1 |
| other | -- * 40 |
ソースコード
## https://yukicoder.me/problems/no/1645
MOD = 998244353
class CombinationCalculator:
"""
modを考慮したPermutation, Combinationを計算するためのクラス
"""
def __init__(self, size, mod):
self.mod = mod
self.factorial = [0] * (size + 1)
self.factorial[0] = 1
for i in range(1, size + 1):
self.factorial[i] = (i * self.factorial[i - 1]) % self.mod
self.inv_factorial = [0] * (size + 1)
self.inv_factorial[size] = pow(self.factorial[size], self.mod - 2, self.mod)
for i in reversed(range(size)):
self.inv_factorial[i] = ((i + 1) * self.inv_factorial[i + 1]) % self.mod
def calc_combination(self, n, r):
if n < 0 or n < r or r < 0:
return 0
if r == 0 or n == r:
return 1
ans = self.inv_factorial[n - r] * self.inv_factorial[r]
ans %= self.mod
ans *= self.factorial[n]
ans %= self.mod
return ans
def calc_permutation(self, n, r):
if n < 0 or n < r:
return 0
ans = self.inv_factorial[n - r]
ans *= self.factorial[n]
ans %= self.mod
return ans
def prod_matrix(left, right):
ans = [[0] * len(left) for _ in range(len(left))]
for i in range(len(left)):
for j in range(len(left)):
for k in range(len(left)):
ans[i][j] += (left[i][k] * right[k][j]) % MOD
ans[i][j] %= MOD
return ans
def prod_vec(matrix, vec):
new_vec = [0] * len(vec)
for i in range(len(vec)):
for j in range(len(vec)):
new_vec[i] += (matrix[i][j] * vec[j]) % MOD
new_vec[i] %= MOD
return new_vec
def solve(K, R, combi):
S = [[0] * (K + 3) for _ in range(K + 3)]
S[0][0] = K
S[0][1] = 1
S[0][K + 2] = 1
for i in range(1, K + 2):
for j in range(i, K + 2):
S[i][j] = combi.calc_combination(K - (i - 1), j - i)
S[K + 2][K + 2] = K
T = [[0] * (2 * K + 6) for _ in range(2 * K + 6)]
for i in range(K + 3):
for j in range(K + 3):
T[i][j] = S[i][j]
for i in range(K + 3):
T[i][i + K + 3] = 1
for i in range(K + 3):
T[i + K + 3][i + K + 3] = 1
vec = [1] + ([0] * K) + [1, 1]
vec = vec + vec
while R > 0:
if R % 2 == 1:
new_vec = prod_vec(T, vec)
vec = new_vec
T = prod_matrix(T, T)
R //= 2
return vec[0]
def main():
K, L, R = map(int, input().split())
combi = CombinationCalculator(2 * K, MOD)
ans = solve(K, R, combi)
ans1 = 0
if L > 0:
ans1 = solve(K, L - 1, combi)
print((ans - ans1) % MOD)
if __name__ == "__main__":
main()