結果
| 問題 |
No.3182 recurrence relation’s intersection sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-12 02:50:25 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,020 bytes |
| コンパイル時間 | 538 ms |
| コンパイル使用メモリ | 82,300 KB |
| 実行使用メモリ | 93,312 KB |
| 最終ジャッジ日時 | 2025-07-12 02:50:45 |
| 合計ジャッジ時間 | 19,670 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 TLE * 1 -- * 22 |
ソースコード
## https://yukicoder.me/problems/no/1645
MOD = 998244353
class CombinationCalculator:
"""
modを考慮したPermutation, Combinationを計算するためのクラス
"""
def __init__(self, size, mod):
self.mod = mod
self.factorial = [0] * (size + 1)
self.factorial[0] = 1
for i in range(1, size + 1):
self.factorial[i] = (i * self.factorial[i - 1]) % self.mod
self.inv_factorial = [0] * (size + 1)
self.inv_factorial[size] = pow(self.factorial[size], self.mod - 2, self.mod)
for i in reversed(range(size)):
self.inv_factorial[i] = ((i + 1) * self.inv_factorial[i + 1]) % self.mod
def calc_combination(self, n, r):
if n < 0 or n < r or r < 0:
return 0
if r == 0 or n == r:
return 1
ans = self.inv_factorial[n - r] * self.inv_factorial[r]
ans %= self.mod
ans *= self.factorial[n]
ans %= self.mod
return ans
def calc_permutation(self, n, r):
if n < 0 or n < r:
return 0
ans = self.inv_factorial[n - r]
ans *= self.factorial[n]
ans %= self.mod
return ans
def prod_matrix(left, right):
ans = [[0] * len(left) for _ in range(len(left))]
for i in range(len(left)):
for j in range(len(left)):
for k in range(len(left)):
ans[i][j] += (left[i][k] * right[k][j]) % MOD
ans[i][j] %= MOD
return ans
def prod_vec(matrix, vec):
new_vec = [0] * len(vec)
for i in range(len(vec)):
for j in range(len(vec)):
new_vec[i] += (matrix[i][j] * vec[j]) % MOD
new_vec[i] %= MOD
return new_vec
def solve(K, R, combi):
if K == 1:
a1 = (R * (R + 1)) % MOD
a1 *= (2 * R + 1) % MOD
a1 *= pow(12, MOD - 2, MOD)
a1 %= MOD
a2 = (R * (R + 1)) % MOD
a2 *= pow(4, MOD - 2, MOD)
a2 %= MOD
a3 = (R + 1)
ans = (a1 + a2)% MOD
ans += a3
ans %= MOD
return ans
S = [[0] * (K + 5) for _ in range(K + 5)]
S[0][0] = K
S[0][1] = 1
S[0][K + 3] = pow(K - 1, MOD - 2, MOD)
S[0][K + 4] = (- pow(K - 1, MOD - 2, MOD) + 1) % MOD
for i in range(2, K + 3):
for j in range(i, K + 3):
S[i][j] = combi.calc_combination(K - (i - 2), j - i)
S[1][1] = 1
for j in range(2, K + 3):
S[1][j] = S[2][j]
S[K + 3][K + 3] = K
S[K + 4][K + 4] = 1
vec = [1, 0] + ([0] * K) + [1, K, 1]
while R > 0:
if R % 2 == 1:
new_vec = prod_vec(S, vec)
vec = new_vec
S = prod_matrix(S, S)
R //= 2
return vec[0]
def main():
K, L, R = map(int, input().split())
combi = CombinationCalculator(2 * K, MOD)
ans = solve(K, R, combi)
ans1 = 0
if L > 0:
ans1 = solve(K, L - 1, combi)
print((ans - ans1) % MOD)
if __name__ == "__main__":
main()