結果

問題 No.3182 recurrence relation’s intersection sum
ユーザー LyricalMaestro
提出日時 2025-07-12 02:52:54
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 2,987 bytes
コンパイル時間 429 ms
コンパイル使用メモリ 82,024 KB
実行使用メモリ 95,472 KB
最終ジャッジ日時 2025-07-12 02:53:14
合計ジャッジ時間 19,385 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 17 TLE * 1 -- * 22
権限があれば一括ダウンロードができます

ソースコード

diff #

## https://yukicoder.me/problems/no/1645

MOD = 998244353


class CombinationCalculator:
    """
    modを考慮したPermutation, Combinationを計算するためのクラス
    """    
    def __init__(self, size, mod):
        self.mod = mod
        self.factorial = [0] * (size + 1)
        self.factorial[0] = 1
        for i in range(1, size + 1):
            self.factorial[i] = (i * self.factorial[i - 1]) % self.mod
        
        self.inv_factorial = [0] * (size + 1)
        self.inv_factorial[size] = pow(self.factorial[size], self.mod - 2, self.mod)

        for i in reversed(range(size)):
            self.inv_factorial[i] = ((i + 1) * self.inv_factorial[i + 1]) % self.mod

    def calc_combination(self, n, r):
        if n < 0 or n < r or r < 0:
            return 0

        if r == 0 or n == r:
            return 1
        
        ans = self.inv_factorial[n - r] * self.inv_factorial[r]
        ans %= self.mod
        ans *= self.factorial[n]
        ans %= self.mod
        return ans
    
    def calc_permutation(self, n, r):
        if n < 0 or n < r:
            return 0

        ans = self.inv_factorial[n - r]
        ans *= self.factorial[n]
        ans %= self.mod
        return ans
        

def prod_matrix(X, left, right):
    ans = [[0] * X for _ in range(X)]
    for i in range(X):
        for j in range(X):
            for k in range(X):
                ans[i][j] += (left[i][k] * right[k][j]) % MOD
                ans[i][j] %= MOD
    return ans

def prod_vec(X, matrix, vec):
    new_vec = [0] * X
    for i in range(X):
        for j in range(X):
            new_vec[i] += (matrix[i][j] * vec[j]) % MOD
            new_vec[i] %= MOD
    return new_vec

def solve(K, R, combi):
    if K == 1:
        a1 = (R * (R + 1)) % MOD
        a1 *= (2 * R + 1) % MOD
        a1 *= pow(12, MOD - 2, MOD)
        a1 %= MOD
        a2 = (R * (R + 1)) % MOD
        a2 *= pow(4, MOD - 2, MOD)
        a2 %= MOD
        a3 = (R + 1)
        ans = (a1 + a2)% MOD
        ans += a3 
        ans %= MOD
        return ans

    S = [[0] * (K + 5) for _ in range(K + 5)]
    S[0][0] = K
    S[0][1] = 1
    S[0][K + 3] = pow(K - 1, MOD - 2, MOD)
    S[0][K + 4] = (- pow(K - 1, MOD - 2, MOD) + 1) % MOD
    for i in range(2, K + 3):
        for j in range(i, K + 3):
            S[i][j] = combi.calc_combination(K - (i - 2), j - i)
    S[1][1] = 1
    for j in range(2, K + 3):
        S[1][j] = S[2][j]
    
    S[K + 3][K + 3] = K
    S[K + 4][K + 4] = 1

    vec = [1, 0] + ([0] * K) + [1, K, 1]
    l0 = K + 5
    while R > 0:
        if R % 2 == 1:
            new_vec = prod_vec(l0, S, vec)
            vec = new_vec

        S = prod_matrix(l0, S, S)
        R //= 2
    return vec[0]

def main():
    K, L, R = map(int, input().split())

    combi = CombinationCalculator(2 * K, MOD)

    ans = solve(K, R, combi)

    ans1 = 0
    if L > 0:
        ans1 = solve(K, L - 1, combi)

    print((ans - ans1) % MOD)


if __name__ == "__main__":
    main()
0