結果
| 問題 |
No.3201 Corporate Synergy
|
| コンテスト | |
| ユーザー |
theory_and_me
|
| 提出日時 | 2025-07-12 04:12:21 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,279 bytes |
| コンパイル時間 | 2,734 ms |
| コンパイル使用メモリ | 209,444 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2025-07-12 04:12:25 |
| 合計ジャッジ時間 | 4,121 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 2 WA * 18 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/maxflow>
using namespace atcoder;
#define rep_(i, a_, b_, a, b, ...) for (int i = (a), lim##i = (b); i < lim##i; ++i)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define drep_(i, a_, b_, a, b, ...) for (int i = (a) - 1, lim##i = (b); i >= lim##i; --i)
#define drep(i, ...) drep_(i, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, 0)
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#ifdef LOCAL
void debug_out() {
cerr << endl;
}
template <class Head, class... Tail> void debug_out(Head H, Tail... T) {
cerr << ' ' << H;
debug_out(T...);
}
#define debug(...) cerr << 'L' << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#define dump(x) cerr << 'L' << __LINE__ << " " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
using ll = long long;
using ld = long double;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
template <class T> vector<T> make_vec(size_t n, T a) {
return vector<T>(n, a);
}
template <class... Ts> auto make_vec(size_t n, Ts... ts) {
return vector<decltype(make_vec(ts...))>(n, make_vec(ts...));
}
template <class T> inline void fin(const T x) {
cout << x << '\n';
exit(0);
}
template <class T> inline void deduplicate(vector<T> &a) {
sort(all(a));
a.erase(unique(all(a)), a.end());
}
template <class T> inline bool chmin(T &a, const T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, const T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> inline int sz(const T &x) {
return x.size();
}
template <class T> inline int count_between(const vector<T> &a, T l, T r) {
return lower_bound(all(a), r) - lower_bound(all(a), l);
}
template <class T1, class T2> istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <class T1, class T2> ostream &operator<<(ostream &os, pair<T1, T2> &p) {
os << '(' << p.first << ", " << p.second << ')';
return os;
}
template <class T, size_t n> istream &operator>>(istream &is, array<T, n> &v) {
for (auto &e : v) is >> e;
return is;
}
template <class T, size_t n> ostream &operator<<(ostream &os, array<T, n> &v) {
for (auto &e : v) os << e << ' ';
return os;
}
template <class T> istream &operator>>(istream &is, vector<T> &v) {
for (auto &e : v) is >> e;
return is;
}
template <class T> ostream &operator<<(ostream &os, vector<T> &v) {
for (auto &e : v) os << e << ' ';
return os;
}
template <class T> istream &operator>>(istream &is, deque<T> &v) {
for (auto &e : v) is >> e;
return is;
}
template <class T> ostream &operator<<(ostream &os, deque<T> &v) {
for (auto &e : v) os << e << ' ';
return os;
}
inline ll floor_div(ll x, ll y) {
if (y < 0) x = -x, y = -y;
return x >= 0 ? x / y : (x - y + 1) / y;
}
inline ll ceil_div(ll x, ll y) {
if (y < 0) x = -x, y = -y;
return x >= 0 ? (x + y - 1) / y : x / y;
}
inline int floor_log2(const ll x) {
assert(x > 0);
return 63 - __builtin_clzll(x);
}
inline int ceil_log2(const ll x) {
assert(x > 0);
return (x == 1) ? 0 : 64 - __builtin_clzll(x - 1);
}
inline int popcount(const ll x) {
return __builtin_popcountll(x);
}
struct fast_ios {
fast_ios() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
};
} fast_ios;
// 時間計測
auto system_now = std::chrono::system_clock::now();
int check_time() {
auto now = std::chrono::system_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(now - system_now).count();
}
// 乱数
struct Xorshift {
uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
uint32_t rand_int() {
uint32_t t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
// 0以上mod未満の整数を乱択
uint32_t rand_int(uint32_t mod) {
return rand_int() % mod;
}
// l以上r未満の整数を乱択
uint32_t rand_int(uint32_t l, uint32_t r) {
assert(l < r);
return l + rand_int(r - l);
}
// 0以上1以下の実数を乱沢
double rand_double() {
return (double)rand_int() / UINT32_MAX;
}
};
Xorshift xor_shift;
// constexpr int INF = numeric_limits<int>::max() >> 2;
// constexpr ll INFll = numeric_limits<ll>::max() >> 2;
// constexpr ld EPS = 1e-10;
// const ld PI = acos(-1.0);
// using mint = modint998244353;
// using mint = modint1000000007;
// using mint = modint;
// using Vm = V<mint>; using VVm = VV<mint>;
/*
N 個の bool 変数 x_0, x_1, ..., x_{N-1} について、以下の形のコストが定められたときの最小コストを求める
・1 変数 xi に関するコスト (1 変数劣モジュラ関数)
xi = F のときのコスト, xi = T のときのコスト
・2 変数 xi, xj 間の関係性についてのコスト (2 変数劣モジュラ関数)
(xi, xj) = (F, F): コスト A
(xi, xj) = (F, T): コスト B
(xi, xj) = (T, F): コスト C
(xi, xj) = (T, T): コスト D
(ただし、B + C >= A + D でなければならない)
・よくある例は、A = B = D = 0, C >= 0 の形である (特に関数化している)
・この場合は、特に Project Selection Problem と呼ばれ、ローカルには「燃やす埋める」などとも呼ばれる
・xi = T, xj = F のときにコスト C がかかる
・他に面白い例として、A = B = C = 0, D <= 0 の形もある (これも関数化している)
・xi = T, xj = T のときに (-D) の利得が得られる
*/
#include <bits/stdc++.h>
using namespace std;
// 2-variable submodular optimization
template <class COST> struct TwoVariableSubmodularOpt {
// constructors
TwoVariableSubmodularOpt()
: N(2), S(0), T(0), OFFSET(0) {
}
TwoVariableSubmodularOpt(int n, COST inf = 0)
: N(n), S(n), T(n + 1), OFFSET(0), INF(inf), list(n + 2) {
}
// initializer
void init(int n, COST inf = 0) {
N = n, S = n, T = n + 1;
OFFSET = 0, INF = inf;
list.assign(N + 2, Edge());
pos.clear();
}
// add 1-Variable submodular functioin
void add_single_cost(int xi, COST false_cost, COST true_cost) {
assert(0 <= xi && xi < N);
if (false_cost >= true_cost) {
OFFSET += true_cost;
add_edge(S, xi, false_cost - true_cost);
} else {
OFFSET += false_cost;
add_edge(xi, T, true_cost - false_cost);
}
}
// add "project selection" constraint
// xi = T, xj = F: strictly prohibited
void add_psp_constraint(int xi, int xj) {
assert(0 <= xi && xi < N);
assert(0 <= xj && xj < N);
add_edge(xi, xj, INF);
}
// add "project selection" penalty
// xi = T, xj = F: cost C
void add_psp_penalty(int xi, int xj, COST C) {
assert(0 <= xi && xi < N);
assert(0 <= xj && xj < N);
assert(C >= 0);
add_edge(xi, xj, C);
}
// add both True profit
// xi = T, xj = T: profit P (cost -P)
void add_both_true_profit(int xi, int xj, COST P) {
assert(0 <= xi && xi < N);
assert(0 <= xj && xj < N);
assert(P >= 0);
OFFSET -= P;
add_edge(S, xi, P);
add_edge(xi, xj, P);
}
// add both False profit
// xi = F, xj = F: profit P (cost -P)
void add_both_false_profit(int xi, int xj, COST P) {
assert(0 <= xi && xi < N);
assert(0 <= xj && xj < N);
assert(P >= 0);
OFFSET -= P;
add_edge(xj, T, P);
add_edge(xi, xj, P);
}
// add general 2-variable submodular function
// (xi, xj) = (F, F): A, (F, T): B
// (xi, xj) = (T, F): C, (T, T): D
void add_submodular_function(int xi, int xj, COST A, COST B, COST C, COST D) {
assert(0 <= xi && xi < N);
assert(0 <= xj && xj < N);
assert(B + C >= A + D); // assure submodular function
OFFSET += A;
add_single_cost(xi, 0, D - B);
add_single_cost(xj, 0, B - A);
add_psp_penalty(xi, xj, B + C - A - D);
}
// add all True profit
// y = F: not gain profit (= cost is P), T: gain profit (= cost is 0)
// y: T, xi: F is prohibited
void add_all_true_profit(const vector<int> &xs, COST P) {
assert(P >= 0);
int y = (int)list.size();
list.resize(y + 1);
OFFSET -= P;
add_edge(S, y, P);
for (auto xi : xs) {
assert(xi >= 0 && xi < N);
add_edge(y, xi, INF);
}
}
// add all False profit
// y = F: gain profit (= cost is 0), T: not gain profit (= cost is P)
// xi = T, y = F is prohibited
void add_all_false_profit(const vector<int> &xs, COST P) {
assert(P >= 0);
int y = (int)list.size();
list.resize(y + 1);
OFFSET -= P;
add_edge(y, T, P);
for (auto xi : xs) {
assert(xi >= 0 && xi < N);
add_edge(xi, y, INF);
}
}
// solve
COST solve() {
return dinic() + OFFSET;
}
// reconstrcut the optimal assignment
vector<bool> reconstruct() {
vector<bool> res(N, false), seen(list.size(), false);
queue<int> que;
seen[S] = true;
que.push(S);
while (!que.empty()) {
int v = que.front();
que.pop();
for (const auto &e : list[v]) {
if (e.cap && !seen[e.to]) {
if (e.to < N) res[e.to] = true;
seen[e.to] = true;
que.push(e.to);
}
}
}
return res;
}
// debug
friend ostream &operator<<(ostream &s, const TwoVariableSubmodularOpt &G) {
const auto &edges = G.get_edges();
for (const auto &e : edges) s << e << endl;
return s;
}
private:
// edge class
struct Edge {
// core members
int rev, from, to;
COST cap, icap, flow;
// constructor
Edge(int r, int f, int t, COST c)
: rev(r), from(f), to(t), cap(c), icap(c), flow(0) {
}
void reset() {
cap = icap, flow = 0;
}
// debug
friend ostream &operator<<(ostream &s, const Edge &E) {
return s << E.from << "->" << E.to << '(' << E.flow << '/' << E.icap << ')';
}
};
// inner data
int N, S, T;
COST OFFSET, INF;
vector<vector<Edge>> list;
vector<pair<int, int>> pos;
// add edge
Edge &get_rev_edge(const Edge &e) {
if (e.from != e.to)
return list[e.to][e.rev];
else
return list[e.to][e.rev + 1];
}
Edge &get_edge(int i) {
return list[pos[i].first][pos[i].second];
}
const Edge &get_edge(int i) const {
return list[pos[i].first][pos[i].second];
}
vector<Edge> get_edges() const {
vector<Edge> edges;
for (int i = 0; i < (int)pos.size(); ++i) {
edges.push_back(get_edge(i));
}
return edges;
}
void add_edge(int from, int to, COST cap) {
if (!cap) return;
pos.emplace_back(from, (int)list[from].size());
list[from].push_back(Edge((int)list[to].size(), from, to, cap));
list[to].push_back(Edge((int)list[from].size() - 1, to, from, 0));
}
// Dinic's algorithm
COST dinic(COST limit_flow) {
COST current_flow = 0;
vector<int> level((int)list.size(), -1), iter((int)list.size(), 0);
// Dinic BFS
auto bfs = [&]() -> void {
level.assign((int)list.size(), -1);
level[S] = 0;
queue<int> que;
que.push(S);
while (!que.empty()) {
int v = que.front();
que.pop();
for (const Edge &e : list[v]) {
if (level[e.to] < 0 && e.cap > 0) {
level[e.to] = level[v] + 1;
if (e.to == T) return;
que.push(e.to);
}
}
}
};
// Dinic DFS
auto dfs = [&](auto self, int v, COST up_flow) {
if (v == T) return up_flow;
COST res_flow = 0;
for (int &i = iter[v]; i < (int)list[v].size(); ++i) {
Edge &e = list[v][i], &re = get_rev_edge(e);
if (level[v] >= level[e.to] || e.cap == 0) continue;
COST flow = self(self, e.to, min(up_flow - res_flow, e.cap));
if (flow <= 0) continue;
res_flow += flow;
e.cap -= flow, e.flow += flow;
re.cap += flow, re.flow -= flow;
if (res_flow == up_flow) break;
}
return res_flow;
};
// flow
while (current_flow < limit_flow) {
bfs();
if (level[T] < 0) break;
iter.assign((int)iter.size(), 0);
while (current_flow < limit_flow) {
COST flow = dfs(dfs, S, limit_flow - current_flow);
if (!flow) break;
current_flow += flow;
}
}
return current_flow;
};
COST dinic() {
return dinic(numeric_limits<COST>::max());
}
};
int main() {
int N;
cin >> N;
vector<int> P(N);
rep(i, N) cin >> P[i];
int M;
cin >> M;
vector<int> U(M), V(M);
rep(i, M) {
cin >> U[i] >> V[i];
--U[i], --V[i];
}
int K;
cin >> K;
vector<int> A(K), B(K), S(K);
rep(i, K) {
cin >> A[i] >> B[i] >> S[i];
--A[i], --B[i];
}
TwoVariableSubmodularOpt<int> G(N);
rep(i, N) {
G.add_single_cost(i, 0, -P[i]);
}
rep(i, M) {
G.add_psp_constraint(V[i], U[i]);
}
rep(i, K) {
G.add_both_true_profit(A[i], B[i], S[i]);
}
cout << -G.solve() << endl;
return 0;
}
theory_and_me