結果
問題 |
No.1879 How many matchings?
|
ユーザー |
|
提出日時 | 2025-07-15 23:16:56 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 11,731 bytes |
コンパイル時間 | 5,058 ms |
コンパイル使用メモリ | 325,912 KB |
実行使用メモリ | 7,716 KB |
最終ジャッジ日時 | 2025-07-15 23:17:02 |
合計ジャッジ時間 | 5,886 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 15 |
ソースコード
#include<bits/stdc++.h> #if __has_include(<atcoder/all>) #include<atcoder/modint> #endif using namespace std; #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define fo(i,...) for(auto[i,i##stop,i##step]=for_range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define of(i,...) for(auto[i,i##stop,i##step]=for_range(1,__VA_ARGS__);i>=i##stop;i+=i##step) #define fe(a,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):a) #define base_operator(op,type) auto operator op(const type&rhs)const{auto copy=*this;return copy op##=rhs;} #define defpp void pp(const auto&...a){const char*c="";((cout<<c<<a,c=" "),...);cout<<'\n';} #define entry defpp void main();void main2();}int main(){my::io();my::main();}namespace my{ #define use_ml1000000007 using ml=atcoder::modint1000000007; namespace my{ auto&operator<<(ostream&o,const atcoder::modint1000000007&x){return o<<(int)x.val();} void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; using lll=__int128_t; template<class T>concept modulary=requires(T t){t.mod();}; constexpr auto for_range(ll s,ll b){ll a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} constexpr auto for_range(ll s,ll a,ll b,ll c=1){return array{a-s,b,(1-s*2)*c};} void lin(auto&...a){(cin>>...>>a);} constexpr auto even(auto x){return~x&1;} constexpr auto abs(auto x){return x<0?-x:x;} auto min(auto...a){return min(initializer_list<common_type_t<decltype(a)...>>{a...});} template<class A,class B=A>struct pair{ A a;B b; pair()=default; pair(A aa,B bb):a(aa),b(bb){} auto operator<=>(const pair&)const=default; }; template<class...A>using pack_back_t=tuple_element_t<sizeof...(A)-1,tuple<A...>>; } namespace my{ template<class V>struct vec; template<int D,class T>struct hvec_helper{using type=vec<typename hvec_helper<D-1,T>::type>;}; template<class T>struct hvec_helper<0,T>{using type=T;}; template<int D,class T>using hvec=hvec_helper<D,T>::type; template<class V>struct vec:vector<V>{ using vector<V>::vector; vec(const vector<V>&v):vector<V>(v){} ll size()const{return vector<V>::size();} auto&emplace_back(auto&&...a){vector<V>::emplace_back(std::forward<decltype(a)>(a)...);return*this;} auto pop_back(){auto r=this->back();vector<V>::pop_back();return r;} }; template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<hvec<sizeof...(A)-2,pack_back_t<A...>>>; } namespace my{ template<class T>auto inv_enumerate(ll n){ vec<T>v(n+1); v[0]=0; if(n>=1)v[1]=1; fo(i,2,n+1)v[i]=-v[T::mod()%i]*(T::mod()/i); return v; } } namespace my{ template<class T>T fac(ll n){static vec<T>v{1};if(ll m=v.size();m<=n){v.resize(n+1);fo(i,m,n+1)v[i]=v[i-1]*i;}return v[n];} template<class T>T fac_inv(ll n){static vec<T>v{1};if(ll m=v.size();m<=n){v.resize(n+1);v[n]=fac<T>(n).inv();of(i,n,m)v[i]=v[i+1]*(i+1);}return v[n];} template<class T>T comb(ll n,ll k){ if(n<0||k<0||n<k)return 0; if constexpr(modulary<T>)return fac<T>(n)*fac_inv<T>(k)*fac_inv<T>(n-k); else { } } } namespace my{ namespace fft{ using real=double; struct complex{ real x,y; complex()=default; complex(real x,real y):x(x),y(y){} inline complex operator+(const complex &c)const{return complex(x+c.x,y+c.y);} inline complex operator-(const complex &c)const{return complex(x-c.x,y-c.y);} inline complex operator*(const complex &c)const{return complex(x*c.x-y*c.y,x*c.y+y*c.x);} inline complex conj()const{return complex(x,-y);} }; const real PI=acosl(-1); ll base=1; vector<complex>rts={{0,0},{1,0}}; vector<int>fft_rev={0,1}; void ensure_base(int nbase){ if(nbase<=base)return; fft_rev.resize(1<<nbase); rts.resize(1<<nbase); fo(i,1<<nbase)fft_rev[i]=(fft_rev[i>>1]>>1)+((i&1)<<(nbase-1)); while(base<nbase){ real angle=PI*2.0/(1<<(base+1)); fo(i,1<<(base-1),1<<base){ rts[i<<1]=rts[i]; real angle_i=angle*(2*i+1-(1<<base)); rts[(i<<1)+1]=complex(std::cos(angle_i),std::sin(angle_i)); } ++base; } } void fast_fourier_transform(vector<complex>&a,int n){ assert((n&(n-1))==0); int zeros=__builtin_ctz(n); ensure_base(zeros); int shift=base-zeros; fo(i,n)if(i<(fft_rev[i]>>shift))swap(a[i],a[fft_rev[i]>>shift]); for(int k=1;k<n;k<<=1){ for(int i=0;i<n;i+=2*k){ for(int j=0;j<k;j++){ complex z=a[i+j+k]*rts[j+k]; a[i+j+k]=a[i+j]-z; a[i+j]=a[i+j]+z; } } } } } template<class T>struct arbitrary_mod_convolution{ using real=fft::real; using complex=fft::complex; arbitrary_mod_convolution(){} auto multiply(const vector<T>&a,const vector<T>&b,int need=-1){ if(need==-1)need=a.size()+b.size()-1; int nbase=0; while((1<<nbase)<need)nbase++; fft::ensure_base(nbase); int sz=1<<nbase; vector<complex>fa(sz); fo(i,a.size())fa[i]=complex(a[i].val()&((1<<15)-1),a[i].val()>>15); fft::fast_fourier_transform(fa,sz); vector<complex>fb(sz); if(a==b){ fb=fa; }else{ fo(i,b.size())fb[i]=complex(b[i].val()&((1<<15)-1),b[i].val()>>15); fft::fast_fourier_transform(fb,sz); } real ratio=0.25/sz; complex r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1); for(int i=0;i<=(sz>>1);i++){ int j=(sz-i)&(sz-1); complex a1=(fa[i]+fa[j].conj()); complex a2=(fa[i]-fa[j].conj())*r2; complex b1=(fb[i]+fb[j].conj())*r3; complex b2=(fb[i]-fb[j].conj())*r4; if(i!=j){ complex c1=(fa[j]+fa[i].conj()); complex c2=(fa[j]-fa[i].conj())*r2; complex d1=(fb[j]+fb[i].conj())*r3; complex d2=(fb[j]-fb[i].conj())*r4; fa[i]=c1*d1+c2*d2*r5; fb[i]=c1*d2+c2*d1; } fa[j]=a1*b1+a2*b2*r5; fb[j]=a1*b2+a2*b1; } fft::fast_fourier_transform(fa,sz); fft::fast_fourier_transform(fb,sz); vector<T>ret(need); fo(i,need){ int64_t aa=llround(fa[i].x); int64_t bb=llround(fb[i].x); int64_t cc=llround(fa[i].y); aa=T(aa).val(),bb=T(bb).val(),cc=T(cc).val(); ret[i]=aa+(bb<<15)+(cc<<30); } return ret; } }; template<class T>struct formal_power_series:vec<T>{ using vec<T>::vec; using fps=formal_power_series; static constexpr ll SPARSE_THRESHOLD=20; static inline arbitrary_mod_convolution<T>fft; static fps mul(const fps&a,const fps&b){ if constexpr(!modulary<T>){ } else if constexpr(is_same_v<T,atcoder::modint998244353>){ } else return fft.multiply(a,b); } auto&shrink(){while(this->size()>1&&this->back()==T{})this->pop_back();return*this;} fps pre(ll deg)const{fps r(this->begin(),this->begin()+min(this->size(),deg));r.resize(deg);return r;} fps&operator-=(const fps&g){if(g.size()>this->size())this->resize(g.size());fo(i,g.size())(*this)[i]-=g[i];return*this;} fps&operator*=(const fps&g){return*this=(this->size()&&g.size()?mul(*this,g):fps{});} fps&operator>>=(ll sz){if(this->size()<=sz)return*this=fps{};this->erase(this->begin(),this->begin()+sz);return*this;} fps&operator<<=(ll sz){this->insert(this->begin(),sz,T{});return*this;} base_operator(-,fps) base_operator(*,fps) fps operator>>(ll sz)const{return fps{*this}>>=sz;} fps operator<<(ll sz)const{return fps{*this}<<=sz;} fps&operator+=(const T&c){if(!this->size())this->resize(1);(*this)[0]+=c;return*this;} fps&operator*=(const T&c){fo(i,this->size())(*this)[i]*=c;return*this;} base_operator(+,T) base_operator(*,T) fps differential()const{ assert(this->size()); fps r(this->size()-1); fo(i,r.size())r[i]=(*this)[i+1]*T{i+1}; return r; } fps integral()const{ fps r(this->size()+1); auto iv=inv_enumerate<T>(r.size()); fo(i,r.size()-1)r[i+1]=(*this)[i]*iv[i+1]; return r; } fps inv_sparse(ll deg=-1)const{ assert((*this)[0]!=T{}); ll n=this->size(); if(deg==-1)deg=n; vec<pair<ll,T>>p; fo(i,1,n)if((*this)[i]!=T{})p.eb(i,(*this)[i]); fps r(deg); r[0]=T{1}/(*this)[0]; fo(i,1,deg){ T t{}; fe(p,k,fk){ if(i-k<0)break; t-=fk*r[i-k]; } r[i]=r[0]*t; } return r; } fps exp_sparse(ll deg=-1)const{ assert((*this)[0]==T{}); ll n=this->size(); if(deg==-1)deg=n; vec<pair<ll,T>>p; fo(i,1,n)if((*this)[i]!=T{})p.eb(i-1,T{i}*(*this)[i]); auto iv=inv_enumerate<T>(deg); fps r(deg); r[0]=1; fo(i,1,deg){ T t{}; fe(p,k,fk){ if(i-k-1<0)break; t+=fk*r[i-k-1]; } r[i]=t*iv[i]; } return r; } fps pow_sparse(lll P,lll Q,ll deg=-1)const{ assert((*this)[0]==T{1}); ll n=this->size(); if(deg==-1)deg=n; vec<pair<ll,T>>p; fo(i,1,n)if((*this)[i]!=T{})p.eb(i,(*this)[i]); auto iv=inv_enumerate<T>(deg); fps r(deg); r[0]=1; T Q_inv=T{1}/Q; fo(i,deg-1){ T t{}; fe(p,k,fk){ if(i-k+1<0)break; t+=fk*r[i-k+1]*(P*Q_inv*k-(i-k+1)); } r[i+1]=t*iv[i+1]; } return r; } ll nonzero_terms_count()const{ll r=0;fe(*this,e)r+=(e!=T{});return r;} fps inv(ll deg=-1)const{ assert((*this)[0]!=T{}); if(deg==-1)deg=this->size(); if(nonzero_terms_count()<SPARSE_THRESHOLD)return inv_sparse(deg); fps r{T{1}/(*this)[0]}; for(ll i=1;i<deg;i<<=1)r=(r*2-this->pre(i<<1)*(r*r)).pre(i<<1); return r.pre(deg); } fps log(ll deg=-1)const{ assert((*this)[0]==T{1}); if(deg==-1)deg=this->size(); return(differential()*inv(deg)).integral().pre(deg); } fps exp(ll deg=-1)const{ assert((*this)[0]==T{}); if(deg==-1)deg=this->size(); if(nonzero_terms_count()<SPARSE_THRESHOLD)return exp_sparse(deg); fps r{1}; for(ll i=1;i<deg;i<<=1)r=(r*(this->pre(i<<1)+T{1}-r.log(i<<1))).pre(i<<1); return r.pre(deg); } fps pow(lll K,ll deg=-1)const{ ll n=this->size(); if(deg==-1)deg=(n-1)*K+1; if(K==0)return fps{1}.pre(deg); if(K==1)return this->pre(deg); bool is_negative=(K<0); K=abs(K); ll a; for(a=0;a<n&&(*this)[a]==T{};++a); if(a==n)return fps(deg); if(a*K>=deg)return fps(deg); T fa_inv=T{1}/(*this)[a]; fps g=(*this*fa_inv)>>a; T faK=((*this)[a].pow(K)); if(ll C=nonzero_terms_count();C==1){ if(is_negative)assert(a==0); if(is_negative)faK=faK.inv(); return fps{faK}<<a*K; }else if(C==2){ if(is_negative)assert(a==0); ll b; for(b=a+1;b<n&&(*this)[b]==T{};++b); T t=1; fps r(deg-a*K); for(ll i=0;(b-a)*i<deg-a*K;++i){ r[(b-a)*i]=(is_negative?comb<T>(i+K-1,K-1):comb<T>(K,i))*t; t*=g[b-a]*(1-is_negative*2); } if(is_negative)faK=faK.inv(); return r*faK<<a*K; } fps r; if(nonzero_terms_count()<SPARSE_THRESHOLD)r=g.pow_sparse(K,1,deg-a*K); else r=(g.log(deg)*K).exp(deg-a*K); r=r*faK<<a*K; return is_negative?r.inv():r; } fps rev()const{fps r{*this};ranges::reverse(r);return r;} static auto polynomial_division(const fps&f,const fps&g){ ll n=f.size()-g.size()+1; fps q=n>0?(f.rev().pre(n)*g.rev().inv(n)).pre(n).rev():fps{}; fps r=(f-g*q).shrink(); return pair{q,r}; } }; template<class T>using fps=formal_power_series<T>; template<class T>T bostan_mori(ll n,fps<T>P,fps<T>Q){ if(P.shrink().size()>=Q.shrink().size()){ auto[q,r]=fps<T>::polynomial_division(P,Q); return(n<q.size()?q[n]:0)+bostan_mori(n,r,Q); } P.resize(Q.size()); while(n){ fps<T>Qsym=Q; fo(i,1,Qsym.size(),2)Qsym[i]=-Qsym[i]; fps<T>PQ=P*Qsym; fps<T>QQ=Q*Qsym; bool f=n&1; fo(i,f,PQ.size(),2)P[i>>1]=PQ[i]; fo(i,0,QQ.size(),2)Q[i>>1]=QQ[i]; n>>=1; } return P[0]/Q[0]; } } namespace my{entry void main(){ LL(N); use_ml1000000007 if(even(N)){ pp(bostan_mori(N/2,fps<ml>{1},fps<ml>{1,-1,-1})); }else{ pp(bostan_mori((N-1)/2,fps<ml>{1,1},fps<ml>{1,-1,-1}.pow(2))); } }}