結果
問題 |
No.3207 Digital Font
|
ユーザー |
![]() |
提出日時 | 2025-07-18 23:32:10 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 691 ms / 3,000 ms |
コード長 | 18,267 bytes |
コンパイル時間 | 3,540 ms |
コンパイル使用メモリ | 250,996 KB |
実行使用メモリ | 24,688 KB |
最終ジャッジ日時 | 2025-07-18 23:32:32 |
合計ジャッジ時間 | 20,693 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 38 |
ソースコード
#ifdef LOCAL #include "template.hpp" #else #include<iostream> #include<string> #include<vector> #include<algorithm> #include<numeric> #include<cmath> #include<utility> #include<tuple> #include<array> #include<cstdint> #include<cstdio> #include<iomanip> #include<map> #include<set> #include<unordered_map> #include<unordered_set> #include<queue> #include<stack> #include<deque> #include<bitset> #include<cctype> #include<chrono> #include<random> #include<cassert> #include<cstddef> #include<iterator> #include<string_view> #include<type_traits> #include<functional> using namespace std; namespace io { template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } template <typename T, size_t N = 0> istream &operator>>(istream &is, array<T, N> &v) { for (auto &x : v) is >> x; return is; } template <size_t N = 0, typename T> istream& cin_tuple_impl(istream &is, T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); is >> x; cin_tuple_impl<N + 1>(is, t); } return is; } template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return cin_tuple_impl(is, t); } template<typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template<typename T, size_t N> ostream &operator<<(ostream &os, const array<T, N> &v) { size_t n = v.size(); for (size_t i = 0; i < n; i++) { if (i) os << " "; os << v[i]; } return os; } template <size_t N = 0, typename T> ostream& cout_tuple_impl(ostream &os, const T &t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) os << " "; const auto &x = std::get<N>(t); os << x; cout_tuple_impl<N + 1>(os, t); } return os; } template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return cout_tuple_impl(os, t); } void in() {} template<typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template<typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } void outr() {} template<typename T, class... U, char sep = ' '> void outr(const T &t, const U &...u) { cout << t; outr(u...); } void __attribute__((constructor)) _c() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); } } // namespace io using io::in; using io::out; using io::outr; #define SHOW(x) static_cast<void>(0) using ll = long long; using D = double; using LD = long double; using P = pair<ll, ll>; using u8 = uint8_t; using u16 = uint16_t; using u32 = uint32_t; using u64 = uint64_t; using i128 = __int128; using u128 = unsigned __int128; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) template<typename T> using PQ = priority_queue<T,vector<T>>; template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>; #define rep1(a) for(ll i = 0; i < a; i++) #define rep2(i, a) for(ll i = 0; i < a; i++) #define rep3(i, a, b) for(ll i = a; i < b; i++) #define rep4(i, a, b, c) for(ll i = a; i < b; i += c) #define overload4(a, b, c, d, e, ...) e #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep1(a) for(ll i = (a)-1; i >= 0; i--) #define rrep2(i, a) for(ll i = (a)-1; i >= 0; i--) #define rrep3(i, a, b) for(ll i = (b)-1; i >= a; i--) #define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c) #define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__) #define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ) #define SZ(v) ll(v.size()) #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x))) template <typename T, typename U> T SUM(const vector<U> &v) { T res = 0; for(auto &&a : v) res += a; return res; } template <typename T> vector<pair<T,int>> RLE(const vector<T> &v) { if (v.empty()) return {}; T cur = v.front(); int cnt = 1; vector<pair<T,int>> res; for (int i = 1; i < (int)v.size(); i++) { if (cur == v[i]) cnt++; else { res.emplace_back(cur, cnt); cnt = 1; cur = v[i]; } } res.emplace_back(cur, cnt); return res; } template<class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); } template<class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); } void YESNO(bool flag) { out(flag ? "YES" : "NO"); } void yesno(bool flag) { out(flag ? "Yes" : "No"); } int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); } int popcnt_sgn(ll x) { return (__builtin_parityl(x) & 1 ? -1 : 1); } int popcnt_sgn(u64 x) { return (__builtin_parityl(x) & 1 ? -1 : 1); } int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T get_bit(T x, int k) { return x >> k & 1; } template <typename T> T set_bit(T x, int k) { return x | T(1) << k; } template <typename T> T reset_bit(T x, int k) { return x & ~(T(1) << k); } template <typename T> T flip_bit(T x, int k) { return x ^ T(1) << k; } template <typename T> T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename T> T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; } template <typename T> T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { ll mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 60) { for (int _ = 0; _ < iter; _++) { double mid = (ok + ng) / 2; (check(mid) ? ok : ng) = mid; } return (ok + ng) / 2; } // max x s.t. b*x <= a ll div_floor(ll a, ll b) { assert(b != 0); if (b < 0) a = -a, b = -b; return a / b - (a % b < 0); } // max x s.t. b*x < a ll div_under(ll a, ll b) { assert(b != 0); if (b < 0) a = -a, b = -b; return a / b - (a % b <= 0); } // min x s.t. b*x >= a ll div_ceil(ll a, ll b) { assert(b != 0); if (b < 0) a = -a, b = -b; return a / b + (a % b > 0); } // min x s.t. b*x > a ll div_over(ll a, ll b) { assert(b != 0); if (b < 0) a = -a, b = -b; return a / b + (a % b >= 0); } // x = a mod b (b > 0), 0 <= x < b ll modulo(ll a, ll b) { assert(b > 0); ll c = a % b; return c < 0 ? c + b : c; } // (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0) // div_floor(a,b), modulo(a,b) pair<ll,ll> divmod(ll a, ll b) { ll q = div_floor(a,b); return {q, a - b*q}; } #endif #line 1 "structure/wavelet/succinct-indexable-dictionary.hpp" /** * @brief Succinct Indexable Dictionary(完備辞書) */ struct SuccinctIndexableDictionary { size_t length; size_t blocks; vector<unsigned> bit, sum; SuccinctIndexableDictionary() = default; SuccinctIndexableDictionary(size_t length) : length(length), blocks((length + 31) >> 5) { bit.assign(blocks, 0U); sum.assign(blocks, 0U); } void set(int k) { bit[k >> 5] |= 1U << (k & 31); } void build() { sum[0] = 0U; for (int i = 1; i < blocks; i++) { sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]); } } bool operator[](int k) { return (bool((bit[k >> 5] >> (k & 31)) & 1)); } int rank(int k) { return (sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1))); } int rank(bool val, int k) { return (val ? rank(k) : k - rank(k)); } }; #line 2 "structure/wavelet/wavelet-matrix-rectangle-sum.hpp" /* * @brief Wavelet Matrix Rectangle Sum * */ template <typename T, int MAXLOG, typename D> struct WaveletMatrixRectangleSum { size_t length; SuccinctIndexableDictionary matrix[MAXLOG]; vector<D> ds[MAXLOG]; int mid[MAXLOG]; WaveletMatrixRectangleSum() = default; WaveletMatrixRectangleSum(const vector<T> &v, const vector<D> &d) : length(v.size()) { assert(v.size() == d.size()); vector<int> l(length), r(length), ord(length); iota(begin(ord), end(ord), 0); for (int level = MAXLOG - 1; level >= 0; level--) { matrix[level] = SuccinctIndexableDictionary(length + 1); int left = 0, right = 0; for (int i = 0; i < length; i++) { if (((v[ord[i]] >> level) & 1)) { matrix[level].set(i); r[right++] = ord[i]; } else { l[left++] = ord[i]; } } mid[level] = left; matrix[level].build(); ord.swap(l); for (int i = 0; i < right; i++) { ord[left + i] = r[i]; } ds[level].resize(length + 1); ds[level][0] = D(); for (int i = 0; i < length; i++) { ds[level][i + 1] = ds[level][i] + d[ord[i]]; } } } pair<int, int> succ(bool f, int l, int r, int level) { return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f}; } // count d[i] s.t. (l <= i < r) && (v[i] < upper) D rect_sum(int l, int r, T upper) { D ret = 0; for (int level = MAXLOG - 1; level >= 0; level--) { bool f = ((upper >> level) & 1); if (f) ret += ds[level][matrix[level].rank(false, r)] - ds[level][matrix[level].rank(false, l)]; tie(l, r) = succ(f, l, r, level); } return ret; } D rect_sum(int l, int r, T lower, T upper) { return rect_sum(l, r, upper) - rect_sum(l, r, lower); } }; template <typename T, int MAXLOG, typename D> struct CompressedWaveletMatrixRectangleSum { WaveletMatrixRectangleSum<int, MAXLOG, D> mat; vector<T> ys; CompressedWaveletMatrixRectangleSum(const vector<T> &v, const vector<D> &d) : ys(v) { sort(begin(ys), end(ys)); ys.erase(unique(begin(ys), end(ys)), end(ys)); vector<int> t(v.size()); for (int i = 0; i < v.size(); i++) t[i] = get(v[i]); mat = WaveletMatrixRectangleSum<int, MAXLOG, D>(t, d); } inline int get(const T &x) { return lower_bound(begin(ys), end(ys), x) - begin(ys); } D rect_sum(int l, int r, T upper) { return mat.rect_sum(l, r, get(upper)); } D rect_sum(int l, int r, T lower, T upper) { return mat.rect_sum(l, r, get(lower), get(upper)); } }; struct LazyMontgomeryModInt64 { using mint = LazyMontgomeryModInt64; using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; static u64 n2; static u64 get_r() { u64 ret = mod; for (int i = 0; i < 5; ++i) ret *= 2 - mod * ret; return ret; } static void set_mod(u64 mod_) { assert(mod_ < (1LL << 62)); assert((mod_ & 1) == 1); mod = mod_; r = get_r(); assert(r * mod == 1); n2 = -u128(mod) % mod; } u64 a; LazyMontgomeryModInt64() : a(0) {} LazyMontgomeryModInt64(const int64_t &b) : a(reduce(u128(b % mod + mod) * n2)){}; static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } mint &operator+=(const mint &b) { if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (i64(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(u128(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint operator+() const { return mint(*this); } mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } mint inverse() const { i64 x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { i64 t; is >> t; b = LazyMontgomeryModInt64(t); return (is); } u64 get() const { u64 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u64 get_mod() { return mod; } }; using m64 = LazyMontgomeryModInt64; typename m64::u64 m64::mod, m64::r, m64::n2; bool miller_rabin(ll n, const vector<ll> &witness) { m64::set_mod(n); int s = 0, t; ll d = n - 1; while (d % 2 == 0) d >>= 1, s++; for (ll a : witness) { if (n <= a) return true; m64 x = m64(a).pow(d); if (x != 1) { for (t = 0; t < s; t++) { if (x == n-1) break; x = x * x; } if (t == s) return false; } } return true; } bool primality_test(ll n) { if (n <= 1) return false; if (n <= 2) return true; if (n % 2 == 0) return false; if (n < 4759123141LL) return miller_rabin(n, {2, 7, 61}); else return miller_rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } ll random_prime(ll lb, ll ub) { mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count()); uniform_int_distribution<ll> rand(lb, ub); ll q; while (!primality_test(q = rand(mt))); return q; } #include "atcoder/modint.hpp" using mint = atcoder::dynamic_modint<-1>; void solve() { u64 h,w,n; in(h,w,n); int p = random_prime(1LL<<30, 1LL<<31); mint::set_mod(p); uniform_int_distribution<u64> uid(0,p-1); mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count()); mint bx = mint::raw(uid(mt)); mint by = mint::raw(uid(mt)); vc<tuple<int,int,int>> ns1, ns2; rep(_,n){ int i,j,x; in(i,j,x); i--; j--; ns1.emplace_back(i,j,x); int y = x; if(x == 6) y = 9; if(x == 9) y = 6; ns2.emplace_back(h-i-1,w-1-j,y); } sort(ALL(ns1)); sort(ALL(ns2)); vc<int> x1(n), x2(n); vc<int> y1(n), y2(n); vc<mint> z1(n); vc<mint> z2(n); rep(i,n) { auto [x,y,z] = ns1[i]; x1[i] = x; y1[i] = y; z1[i] = bx.pow(x) * by.pow(y) * z; } rep(i,n) { auto [x,y,z] = ns2[i]; x2[i] = x; y2[i] = y; z2[i] = bx.pow(x) * by.pow(y) * z; } int q; in(q); if(n == 0){ rep(i,q){ int l,r,d,u; in(l,r,d,u); out("Yes"); } return; } CompressedWaveletMatrixRectangleSum<int,17,mint> rs1(y1,z1); CompressedWaveletMatrixRectangleSum<int,17,mint> rs2(y2,z2); rep(q){ u64 l,r,d,u; in(l,d,r,u); l--; d--; int mn1 = LB(x1,l); int mx1 = LB(x1,r); int mn2 = LB(x2,h-r); int mx2 = LB(x2,h-l); auto hs1 = rs1.rect_sum(mn1,mx1,d,u); auto hs2 = rs2.rect_sum(mn2,mx2,w-u,w-d); hs1 *= bx.pow(h-r) * by.pow(w-u); hs2 *= bx.pow(l) * by.pow(d); yesno(hs1 == hs2); } } int main() { int tc = 1; // in(tc); while(tc--){ solve(); } }