結果
| 問題 |
No.2839 AND Constraint
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-20 01:44:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,739 bytes |
| コンパイル時間 | 396 ms |
| コンパイル使用メモリ | 82,220 KB |
| 実行使用メモリ | 98,584 KB |
| 最終ジャッジ日時 | 2025-07-20 01:44:28 |
| 合計ジャッジ時間 | 10,176 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 14 TLE * 2 |
ソースコード
## https://yukicoder.me/problems/no/2839
MOD = 998244353
class NTT:
def __init__(self):
self._root = self._make_root()
self._invroot = self._make_invroot(self._root)
def _reverse_bits(self, n):
n = (n >> 16) | (n << 16)
n = ((n & 0xff00ff00) >> 8) | ((n & 0x00ff00ff) << 8)
n = ((n & 0xf0f0f0f0) >> 4) | ((n & 0x0f0f0f0f) << 4)
n = ((n & 0xcccccccc) >> 2) | ((n & 0x33333333) << 2)
n = ((n & 0xaaaaaaaa) >> 1) | ((n & 0x55555555) << 1)
return n
def _make_root(self):
# 3はMODの原始根, 119乗するとconvolusion, NTT における「基底」の条件を満たす
r = pow(3, 119, MOD)
return [pow(r, 2 ** i, MOD) for i in range(23, -1, -1)]
def _make_invroot(self, root):
invroot = []
for i in range(len(root)):
invroot.append(pow(root[i], MOD - 2, MOD))
return invroot
def _ntt(self, poly, root, rev, max_l):
n = len(poly)
k = (n - 1).bit_length()
step = (max_l) >> k
for i, j in enumerate(rev[::step]):
if i < j:
poly[i], poly[j] = poly[j], poly[i]
r = 1
for w in root[1:(k + 1)]:
for l in range(0, n, r * 2):
wi = 1
for i in range(r):
a = (poly[l + i + r] * wi) % MOD
a += poly[l + i]
a %= MOD
b = (-poly[l + i + r] * wi) % MOD
b += poly[l + i]
b %= MOD
poly[l + i] = a
poly[l + i + r] = b
wi *= w
wi %= MOD
r <<= 1
def convolution(self, poly_l, poly_r):
# 多項式を畳み込んだ時の次数よりも大きい2の冪の長さを求める
# (NTTの特性上2の冪乗に乗せるため)
len_ans = len(poly_l) + len(poly_r) - 1
if (min(len(poly_l), len(poly_r)) <= 40):
return self._combolution_light(poly_l, poly_r)
# 2の冪の長さを求める
n = 1
max_depth = 0
while n <= len_ans:
n *= 2
max_depth += 1
rev = [self._reverse_bits(i) >> (32- max_depth) for i in range(n)]
new_poly_l = [0] * n
for i in range(len(poly_l)):
new_poly_l[i] = poly_l[i]
new_poly_r = [0] * n
for i in range(len(poly_r)):
new_poly_r[i] = poly_r[i]
# 数論変換
self._ntt(new_poly_l, self._root, rev, n)
self._ntt(new_poly_r, self._root, rev, n)
# 畳み込みは各iを代入した値の積で求められる
d_ans = [0] * n
for i in range(n):
d_ans[i] = (new_poly_l[i] * new_poly_r[i]) % MOD
# 逆数論変換
self._ntt(d_ans, self._invroot, rev, n)
# 最後の定数分割る処理
inv_n = pow(n, MOD - 2, MOD)
poly_ans = [0] * len_ans
for i in range(len_ans):
poly_ans[i] = (d_ans[i] * inv_n) % MOD
return poly_ans
def _combolution_light(self, poly_l, poly_r):
poly_ans = [0] * (len(poly_l) + len(poly_r) - 1)
for i in range(len(poly_l)):
for j in range(len(poly_r)):
poly_ans[i + j] += (poly_l[i] * poly_r[j]) % MOD
poly_ans[i + j] %= MOD
return poly_ans
def main():
N, M = map(int, input().split())
dp = [[[0, 0] for _ in range(M + 1)] for _ in range(N)]
dp[0][0][0] = 1
dp[0][1][1] = 1
ntt = NTT()
for i in range(1, N):
dp_pre = [[0, 0] for _ in range(M + 1)]
for m in range(M + 1):
dp_pre[m][0] += dp[i - 1][m][0]
dp_pre[m][0] %= MOD
if m + 1 <= M:
dp_pre[m + 1][1] += dp[i - 1][m][0]
dp_pre[m + 1][1] %= MOD
if m + 1 <= M:
dp_pre[m + 1][1] += dp[i - 1][m][1]
dp_pre[m + 1][1] %= MOD
dp0 = [0] * (M + 1)
dp_pre_total = [0] * (M + 1)
for m in range(M + 1):
dp0[m] = ( dp[i - 1][m][0] + dp[i - 1][m][1]) % MOD
dp_pre_total[m] = ( dp_pre[m][0] + dp_pre[m][1]) % MOD
for n in range(M + 1):
for m in range(n + 1):
x0 = (dp0[m] * dp_pre_total[n - m]) % MOD
zz0 = ( dp[i - 1][m][0] * dp_pre[n - m][0]) % MOD
dp[i][n][0] += zz0
dp[i][n][0] %= MOD
dp[i][n][1] += (x0 - zz0) % MOD
dp[i][n][1] %= MOD
answer = dp[-1][M][0] + dp[-1][M][1]
answer %= MOD
print(answer)
if __name__ == "__main__":
main()