結果
問題 |
No.3207 Digital Font
|
ユーザー |
|
提出日時 | 2025-07-22 18:03:35 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,159 ms / 3,000 ms |
コード長 | 5,113 bytes |
コンパイル時間 | 2,434 ms |
コンパイル使用メモリ | 82,348 KB |
実行使用メモリ | 190,036 KB |
最終ジャッジ日時 | 2025-07-22 18:04:44 |
合計ジャッジ時間 | 55,820 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 38 |
ソースコード
# Generated By Gemini 2.5 Pro import sys from bisect import bisect_left, bisect_right import random def solve(): """ Solves the point-symmetric matrix problem using an offline sweep-line algorithm with double hashing, correctly handling the value 0. """ try: # Fast I/O readline = sys.stdin.readline H_str, W_str = readline().split() H, W = int(H_str), int(W_str) N = int(readline()) points = [tuple(map(int, readline().split())) for _ in range(N)] Q = int(readline()) queries = [tuple(map(int, readline().split())) for _ in range(Q)] except (IOError, ValueError): return # --- 1. Hashing and Coordinate Compression Setup --- MOD1, MOD2 = 10**9 + 7, 998244353 P1_1, P2_1 = 37, 41 P1_2, P2_2 = 43, 47 max_pow_dim1 = 2 * H + 2 max_pow_dim2 = 2 * W + 2 def precompute_powers(p, mod, size): p_inv = pow(p, mod - 2, mod) pows = [1] * size inv_pows = [1] * size for i in range(1, size): pows[i] = (pows[i - 1] * p) % mod inv_pows[i] = (inv_pows[i - 1] * p_inv) % mod return pows, inv_pows pow1_1, inv_pow1_1 = precompute_powers(P1_1, MOD1, max_pow_dim1) pow2_1, inv_pow2_1 = precompute_powers(P2_1, MOD1, max_pow_dim2) pow1_2, inv_pow1_2 = precompute_powers(P1_2, MOD2, max_pow_dim1) pow2_2, inv_pow2_2 = precompute_powers(P2_2, MOD2, max_pow_dim2) # --- THE CRITICAL FIX IS HERE --- rng = random.Random(42) R = {x: rng.randint(1, MOD1 - 1) for x in [1, 2, 5, 6, 8, 9]} R[0] = 0 # A value of 0 must have a hash contribution of 0. f = {0: 0, 1: 1, 2: 2, 5: 5, 6: 9, 8: 8, 9: 6} R_f = {k: R[v] for k, v in f.items()} # Coordinate compression for columns cols_set = set(p[1] for p in points) for _, d, _, u in queries: cols_set.add(d) cols_set.add(u) all_cols = sorted(list(cols_set)) col_map = {val: i for i, val in enumerate(all_cols)} # --- 2. Event Creation for Sweep-line --- events = [] # Point events for r, c, x in points: if x == 0: continue # Explicit 0s have 0 hash, so we can skip them comp_c = col_map[c] h1_fwd = (pow1_1[r] * pow2_1[c] * R[x]) % MOD1 h1_bwd = (inv_pow1_1[r] * inv_pow2_1[c] * R_f[x]) % MOD1 h2_fwd = (pow1_2[r] * pow2_2[c] * R[x]) % MOD2 h2_bwd = (inv_pow1_2[r] * inv_pow2_2[c] * R_f[x]) % MOD2 events.append((r, 0, comp_c, h1_fwd, h1_bwd, h2_fwd, h2_bwd)) # Query events ans = [[0, 0, 0, 0] for _ in range(Q)] for i in range(Q): l, d, r, u = queries[i] cd = bisect_left(all_cols, d) cu = bisect_right(all_cols, u) - 1 if cd <= cu: events.append((r, 1, i, cd, cu, 1)) if l > 1: events.append((l - 1, 1, i, cd, cu, -1)) events.sort() # --- 3. Sweep-line Processing --- bit1_fwd, bit1_bwd = FenwickTree(len(all_cols), MOD1), FenwickTree(len(all_cols), MOD1) bit2_fwd, bit2_bwd = FenwickTree(len(all_cols), MOD2), FenwickTree(len(all_cols), MOD2) for event in events: type = event[1] if type == 0: # Point Event _, _, c_idx, h1f, h1b, h2f, h2b = event bit1_fwd.add(c_idx, h1f) bit1_bwd.add(c_idx, h1b) bit2_fwd.add(c_idx, h2f) bit2_bwd.add(c_idx, h2b) else: # Query Event _, _, q_idx, cd, cu, sign = event s1f, s1b = bit1_fwd.query_range(cd, cu), bit1_bwd.query_range(cd, cu) s2f, s2b = bit2_fwd.query_range(cd, cu), bit2_bwd.query_range(cd, cu) # Apply sign for inclusion-exclusion ans[q_idx][0] = (ans[q_idx][0] + sign * s1f) % MOD1 ans[q_idx][1] = (ans[q_idx][1] + sign * s1b) % MOD1 ans[q_idx][2] = (ans[q_idx][2] + sign * s2f) % MOD2 ans[q_idx][3] = (ans[q_idx][3] + sign * s2b) % MOD2 # --- 4. Final Judgment --- for i in range(Q): l, d, r, u = queries[i] factor1 = (pow1_1[r + l] * pow2_1[u + d]) % MOD1 target1_bwd = (ans[i][1] * factor1) % MOD1 check1 = (ans[i][0] == target1_bwd) factor2 = (pow1_2[r + l] * pow2_2[u + d]) % MOD2 target2_bwd = (ans[i][3] * factor2) % MOD2 check2 = (ans[i][2] == target2_bwd) if check1 and check2: print("Yes") else: print("No") class FenwickTree: """1D Fenwick Tree (BIT)""" def __init__(self, n, mod): self.n = n self.mod = mod self.data = [0] * (n + 1) def add(self, i, x): i += 1 while i <= self.n: self.data[i] = (self.data[i] + x) % self.mod i += i & -i def _query(self, i): s = 0 while i > 0: s = (s + self.data[i]) % self.mod i -= i & -i return s def query_range(self, l, r): if l > r: return 0 return (self._query(r + 1) - self._query(l) + self.mod) % self.mod if __name__ == "__main__": solve()