結果
| 問題 | No.3208 Parse AND OR Affection |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-22 18:21:14 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,699 bytes |
| コンパイル時間 | 479 ms |
| コンパイル使用メモリ | 82,584 KB |
| 実行使用メモリ | 212,904 KB |
| 最終ジャッジ日時 | 2025-07-22 18:21:53 |
| 合計ジャッジ時間 | 38,630 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 1 |
| other | WA * 20 |
ソースコード
# Generated By Gemini 2.5 Pro
import sys
# Set recursion limit for deep segment tree and use faster I/O
sys.setrecursionlimit(252525 + 5)
readline = sys.stdin.readline
def mat_mul(A, B):
"""Multiplies two 4x4 matrices."""
C = [[0, 0, 0, 0] for _ in range(4)]
for i in range(4):
for j in range(4):
for k in range(4):
C[i][j] += A[i][k] * B[k][j]
return C
def solve():
try:
N, Q = map(int, readline().split())
X = readline().strip()
except (IOError, ValueError):
return
N_prime = (N + 1) // 2
# --- 1. Preprocessing: Create Transition Matrices ---
identity_matrix = [[(1 if i == j else 0) for j in range(4)] for i in range(4)]
matrices = [identity_matrix] * N_prime
A = [(X[2 * i] == 'T') for i in range(N_prime)]
op_map = {'+': 0, '*': 1, '^': 2}
for q in range(N_prime): # 0-indexed operand q
# Default matrix for a new expression starting at q
c = 1 if A[q] else 0
f = 1 - c
# M maps [T_old, F_old, Total_old, 1] to [T_new, F_new, Total_new, 1]
# Base case: start a new sequence
# T_new = c, F_new = f, Total_new = c
M = [[0,0,0,0], [0,0,0,0], [0,0,0,0], [c,f,c,1]]
if q > 0: # If there's a previous state to transform
op = op_map[X[2 * q - 1]]
operand = A[q]
# h(v) = eval(v, op, operand)
# h(T)=T, h(F)=F -> id
# h(T)=F, h(F)=T -> not
# h(T)=T, h(F)=T -> const_T
# h(T)=F, h(F)=F -> const_F
if op == 0: # OR
h_T_is_T, h_F_is_T = (True, True) if operand else (True, False)
elif op == 1: # AND
h_T_is_T, h_F_is_T = (True, False) if operand else (False, False)
else: # XOR
h_T_is_T, h_F_is_T = (False, True) if operand else (True, False)
# T_new = T_old*h(T)_is_T + F_old*h(F)_is_T + c
# F_new = T_old*h(T)_is_F + F_old*h(F)_is_F + f
# Total_new = Total_old + T_new
M[0][0] = 1 if h_T_is_T else 0
M[0][1] = 0 if h_T_is_T else 1
M[0][2] = 1 if h_T_is_T else 0 # Contribution to Total_new
M[1][0] = 1 if h_F_is_T else 0
M[1][1] = 0 if h_F_is_T else 1
M[1][2] = 1 if h_F_is_T else 0
M[2][2] = 1 # Total_old persists
M[3][2] += M[0][2]*0 + M[1][2]*0 # Add c to Total_new
matrices[q] = M
# --- 2. Build Segment Tree ---
seg_tree = [identity_matrix] * (2 * N_prime)
# Populate leaves
for i in range(N_prime):
seg_tree[N_prime + i] = matrices[i]
# Build tree by merging up
for i in range(N_prime - 1, 0, -1):
seg_tree[i] = mat_mul(seg_tree[2 * i], seg_tree[2 * i + 1])
# --- 3. Process Queries ---
for _ in range(Q):
L, R = map(int, readline().split())
l_idx, r_idx = (L - 1) // 2, (R - 1) // 2
# Query segment tree for matrix product over [l_idx, r_idx]
res_matrix = identity_matrix
l, r = l_idx + N_prime, r_idx + N_prime + 1
while l < r:
if l & 1:
res_matrix = mat_mul(res_matrix, seg_tree[l])
l += 1
if r & 1:
r -= 1
res_matrix = mat_mul(res_matrix, seg_tree[r])
l >>= 1
r >>= 1
# The answer is the (3,2) element (0-indexed) of the product matrix,
# which corresponds to the final TOTAL_T after starting with [0,0,0,1].
print(res_matrix[3][2])
if __name__ == "__main__":
solve()