結果
問題 |
No.3208 Parse AND OR Affection
|
ユーザー |
|
提出日時 | 2025-07-22 18:24:22 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,336 bytes |
コンパイル時間 | 630 ms |
コンパイル使用メモリ | 82,100 KB |
実行使用メモリ | 276,076 KB |
最終ジャッジ日時 | 2025-07-22 18:25:08 |
合計ジャッジ時間 | 45,110 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | WA * 1 |
other | WA * 20 |
ソースコード
# Generated By Gemini 2.5 Pro import sys sys.setrecursionlimit(252525 + 5) readline = sys.stdin.readline def mat_mul(A, B): """Multiplies two 4x4 matrices.""" C = [[0, 0, 0, 0] for _ in range(4)] for i in range(4): for j in range(4): # This is vector-matrix multiplication V*M, so loop k on column of A / row of B for k in range(4): C[i][j] += A[i][k] * B[k][j] return C def solve(): try: N, Q = map(int, readline().split()) X = readline().strip() except (IOError, ValueError): return N_prime = (N + 1) // 2 # --- 1. Preprocessing: Create Start and Transition Matrices --- identity_matrix = [[(1 if i == j else 0) for j in range(4)] for i in range(4)] start_matrices = [identity_matrix] * N_prime trans_matrices = [identity_matrix] * (N_prime) A = [(X[2 * i] == 'T') for i in range(N_prime)] op_map = {'+': 0, '*': 1, '^': 2} for q in range(N_prime): # 0-indexed operand q # Create Start Matrix S_q c = 1 if A[q] else 0 f = 1 - c start_matrices[q] = [[0,0,0,0], [0,0,0,0], [0,0,0,0], [c,f,c,1]] # Create Transition Matrix T_q (for transition from q-1 to q) if q > 0: op = op_map[X[2 * q - 1]] h_T_is_T, h_F_is_T = False, False if op == 0: # OR h_T_is_T, h_F_is_T = (True, True) if A[q] else (True, False) elif op == 1: # AND h_T_is_T, h_F_is_T = (True, False) if A[q] else (False, False) else: # XOR h_T_is_T, h_F_is_T = (False, True) if A[q] else (True, False) a = 1 if h_T_is_T else 0 b = 1 if h_F_is_T else 0 d = 1 - a e = 1 - b trans_matrices[q] = [[a,d,a,0], [b,e,b,0], [0,0,1,0], [0,0,0,1]] # --- 2. Build Segment Tree on Transition Matrices --- # We only need to combine transitions, so segtree is on T_1...T_{N'-1} seg_tree = [identity_matrix] * (2 * N_prime) for i in range(1, N_prime): seg_tree[N_prime + i] = trans_matrices[i] for i in range(N_prime - 1, 0, -1): seg_tree[i] = mat_mul(seg_tree[2 * i], seg_tree[2 * i + 1]) # --- 3. Process Queries --- for _ in range(Q): L, R = map(int, readline().split()) l_idx, r_idx = (L - 1) // 2, (R - 1) // 2 # Get the start matrix for the first element res_matrix = start_matrices[l_idx] # Query segment tree for product of transition matrices [l_idx+1, r_idx] if l_idx < r_idx: l, r = (l_idx + 1) + N_prime, (r_idx) + N_prime + 1 trans_prod = identity_matrix while l < r: if l & 1: trans_prod = mat_mul(trans_prod, seg_tree[l]) l += 1 if r & 1: r -= 1 trans_prod = mat_mul(trans_prod, seg_tree[r]) l >>= 1 r >>= 1 res_matrix = mat_mul(res_matrix, trans_prod) # The answer is the final TOTAL_T, which is the (3,2) element # of the product matrix starting from the [0,0,0,1] state. print(res_matrix[3][2]) if __name__ == "__main__": solve()