結果
問題 |
No.3208 Parse AND OR Affection
|
ユーザー |
|
提出日時 | 2025-07-22 18:57:17 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,113 bytes |
コンパイル時間 | 387 ms |
コンパイル使用メモリ | 82,604 KB |
実行使用メモリ | 213,772 KB |
最終ジャッジ日時 | 2025-07-22 18:58:10 |
合計ジャッジ時間 | 48,224 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | WA * 1 |
other | WA * 20 |
ソースコード
# Generated By Gemini 2.5 Pro import sys sys.setrecursionlimit(252525 + 5) readline = sys.stdin.readline def mat_mul(A, B): """Multiplies two 4x4 matrices.""" C = [[0, 0, 0, 0] for _ in range(4)] for i in range(4): for j in range(4): for k in range(4): C[i][j] += A[i][k] * B[k][j] return C def solve(): try: N, Q = map(int, readline().split()) X = readline().strip() except (IOError, ValueError): return N_prime = (N + 1) // 2 # --- 1. Preprocessing: Create Transition Matrices --- identity_matrix = [[(1 if i == j else 0) for j in range(4)] for i in range(4)] matrices = [identity_matrix] * N_prime A = [(X[2 * i] == 'T') for i in range(N_prime)] op_map = {'+': 0, '*': 1, '^': 2} for q in range(N_prime): # 0-indexed operand q M = [[0] * 4 for _ in range(4)] # Determine coefficients based on h_{q-1} and A[q] # For q=0, there is no h_{q-1}, so we treat it as an identity transform h_T_is_T, h_F_is_T = True, False if q > 0: op = op_map[X[2 * q - 1]] if op == 0: # OR h_T_is_T, h_F_is_T = (True, True) if A[q] else (True, False) elif op == 1: # AND h_T_is_T, h_F_is_T = (True, False) if A[q] else (False, False) else: # XOR h_T_is_T, h_F_is_T = (False, True) if A[q] else (True, False) a = 1 if h_T_is_T else 0 b = 1 if h_F_is_T else 0 d = 1 - a e = 1 - b c = 1 if A[q] else 0 g = 1 - c # V_q = V_{q-1} * M_q, where V = [num_F, num_T, const_1, total_T] M[0][0], M[0][1] = e, b M[1][0], M[1][1] = d, a M[2][0], M[2][1], M[2][2] = g, c, 1 M[3][3] = 1 # total_T column M[0][3] = b M[1][3] = a M[2][3] = c matrices[q] = M # --- 2. Build Segment Tree --- seg_tree = [identity_matrix] * (2 * N_prime) for i in range(N_prime): seg_tree[N_prime + i] = matrices[i] for i in range(N_prime - 1, 0, -1): # Note the order of multiplication for V*M1*M2 = V*(M1*M2) seg_tree[i] = mat_mul(seg_tree[2 * i], seg_tree[2 * i + 1]) # --- 3. Process Queries --- for _ in range(Q): L, R = map(int, readline().split()) l_idx, r_idx = (L - 1) // 2, (R - 1) // 2 res_matrix = identity_matrix l, r = l_idx + N_prime, r_idx + N_prime + 1 while l < r: if l & 1: res_matrix = mat_mul(res_matrix, seg_tree[l]) l += 1 if r & 1: r -= 1 res_matrix = mat_mul(res_matrix, seg_tree[r]) l >>= 1 r >>= 1 # The initial vector is [0, 0, 1, 0] for a subproblem # [num_F, num_T, const_1, total_T] # The result is [0,0,1,0] * res_matrix, which is the 3rd row (index 2) print(res_matrix[2][3] + res_matrix[2][1]) if __name__ == "__main__": solve()