結果
| 問題 | No.3208 Parse AND OR Affection |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-22 18:57:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,113 bytes |
| コンパイル時間 | 387 ms |
| コンパイル使用メモリ | 82,604 KB |
| 実行使用メモリ | 213,772 KB |
| 最終ジャッジ日時 | 2025-07-22 18:58:10 |
| 合計ジャッジ時間 | 48,224 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 1 |
| other | WA * 20 |
ソースコード
# Generated By Gemini 2.5 Pro
import sys
sys.setrecursionlimit(252525 + 5)
readline = sys.stdin.readline
def mat_mul(A, B):
"""Multiplies two 4x4 matrices."""
C = [[0, 0, 0, 0] for _ in range(4)]
for i in range(4):
for j in range(4):
for k in range(4):
C[i][j] += A[i][k] * B[k][j]
return C
def solve():
try:
N, Q = map(int, readline().split())
X = readline().strip()
except (IOError, ValueError):
return
N_prime = (N + 1) // 2
# --- 1. Preprocessing: Create Transition Matrices ---
identity_matrix = [[(1 if i == j else 0) for j in range(4)] for i in range(4)]
matrices = [identity_matrix] * N_prime
A = [(X[2 * i] == 'T') for i in range(N_prime)]
op_map = {'+': 0, '*': 1, '^': 2}
for q in range(N_prime): # 0-indexed operand q
M = [[0] * 4 for _ in range(4)]
# Determine coefficients based on h_{q-1} and A[q]
# For q=0, there is no h_{q-1}, so we treat it as an identity transform
h_T_is_T, h_F_is_T = True, False
if q > 0:
op = op_map[X[2 * q - 1]]
if op == 0: # OR
h_T_is_T, h_F_is_T = (True, True) if A[q] else (True, False)
elif op == 1: # AND
h_T_is_T, h_F_is_T = (True, False) if A[q] else (False, False)
else: # XOR
h_T_is_T, h_F_is_T = (False, True) if A[q] else (True, False)
a = 1 if h_T_is_T else 0
b = 1 if h_F_is_T else 0
d = 1 - a
e = 1 - b
c = 1 if A[q] else 0
g = 1 - c
# V_q = V_{q-1} * M_q, where V = [num_F, num_T, const_1, total_T]
M[0][0], M[0][1] = e, b
M[1][0], M[1][1] = d, a
M[2][0], M[2][1], M[2][2] = g, c, 1
M[3][3] = 1
# total_T column
M[0][3] = b
M[1][3] = a
M[2][3] = c
matrices[q] = M
# --- 2. Build Segment Tree ---
seg_tree = [identity_matrix] * (2 * N_prime)
for i in range(N_prime):
seg_tree[N_prime + i] = matrices[i]
for i in range(N_prime - 1, 0, -1):
# Note the order of multiplication for V*M1*M2 = V*(M1*M2)
seg_tree[i] = mat_mul(seg_tree[2 * i], seg_tree[2 * i + 1])
# --- 3. Process Queries ---
for _ in range(Q):
L, R = map(int, readline().split())
l_idx, r_idx = (L - 1) // 2, (R - 1) // 2
res_matrix = identity_matrix
l, r = l_idx + N_prime, r_idx + N_prime + 1
while l < r:
if l & 1:
res_matrix = mat_mul(res_matrix, seg_tree[l])
l += 1
if r & 1:
r -= 1
res_matrix = mat_mul(res_matrix, seg_tree[r])
l >>= 1
r >>= 1
# The initial vector is [0, 0, 1, 0] for a subproblem
# [num_F, num_T, const_1, total_T]
# The result is [0,0,1,0] * res_matrix, which is the 3rd row (index 2)
print(res_matrix[2][3] + res_matrix[2][1])
if __name__ == "__main__":
solve()