結果
| 問題 |
No.3225 2×2行列相似判定 〜easy〜
|
| ユーザー |
👑 |
| 提出日時 | 2025-07-24 09:06:18 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 6,147 bytes |
| コンパイル時間 | 190 ms |
| コンパイル使用メモリ | 82,976 KB |
| 実行使用メモリ | 104,712 KB |
| 最終ジャッジ日時 | 2025-07-27 20:10:24 |
| 合計ジャッジ時間 | 6,627 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | TLE * 1 -- * 2 |
| other | -- * 33 |
ソースコード
class ModB:
B = 109
length_bound = 10**6 #User definition
length_max = min( length_bound , B )
inverse = [None,1]
factorial = [1]
factorial_inverse = [1]
def SetModulo(B):
ModB.B = int(B)
assert(ModB.B > 0)
ModB.length_max = min( ModB.length_bound , ModB.B )
ModB.inverse = [None,1] if ModB.B>1 else [0]
ModB.factorial = [1 if ModB.B>1 else 0]
ModB.factorial_inverse = [1 if ModB.B>1 else 0]
def __init__(self,val,valid = False):
self.val = int(val)
if not valid and not(0 <= self.val < ModB.B):self.val %= ModB.B
def get(n):
return n.val if n.__class__ == __class__ else n
def copy(self):
return ModB(self.val,True)
def __str__(self):
return str(self.val)
def __eq__(self,x):
if x.__class__ != __class__:x=ModB(x)
return x.val==self.val
def __ne__(self,other):
return not( self == other )
def __iadd__(self,x):
self.val += ModB.ref(x).val
if self.val >= ModB.B:self.val -= ModB.B
return self
def __add__(self,x):
a = self.copy()
a += x
return a
def __radd__(self,x):
return ModB(x + self.val)
def __neg__(self):
return ModB(ModB.B - self.val if self.val else 0,True)
def __isub__(self,x):
self.val -= ModB.ref(x).val
if self.val < 0:self.val += ModB.B
return self
def __sub__(self,x):
a = self.copy()
a -= x
return a
def __rsub__(self,x):
return ModB(x - self.val)
def __mul__(self,x):
return ModB.get(x) * self
def __rmul__(self,x):
return ModB(self.val * x)
def __pow__(self,n): #Supported only if n>=0.
assert 0<=n
answer = ModB(1)
power = self.copy()
while n > 0:
if n&1:answer *= power.val
power *= power.val
n >>= 1
return answer
def __xor__(self,n): #Supported only if B is a prime and val!=0, or n>=0.
return self ** ( ( n * (2 - ModB.B) )if n < 0 else n )
def Inverse(n): #Supported only if B is a prime.
if n.__class__ == __class__:n=n.val
if n >= ModB.B:n %= ModB.B
assert n > 0 or ModB.B == 1
if n < ModB.length_max:
while len(ModB.inverse) <= n:ModB.inverse+=[ModB.B - ModB.inverse[ModB.B % len(ModB.inverse)] * ( ModB.B // len(ModB.inverse) ) % ModB.B]
return ModB(ModB.inverse[n],True)
return ModB(n) ** ( ModB.B - 2 )
def __truediv__(self,x):
return ModB.Inverse(x) * self
def __rtruediv__(self,x):
return x * ModB.Inverse(self.val)
def Factorial(n):
while len(ModB.factorial) <= n:ModB.factorial+=[ModB.factorial[-1] * len(ModB.factorial) % ModB.B]
return ModB(ModB.factorial[n],True)
def FactorialInverse(n): #Supported only if B is a prime.
while len(ModB.factorial_inverse) <= n:ModB.factorial_inverse+=[ModB.factorial_inverse[-1] * ModB.Inverse( len(ModB.factorial_inverse) ).val % ModB.B]
return ModB(ModB.factorial_inverse[n],True)
def Combination(n,m): #Supported only if B is a prime.
return ModB.Factorial(n) * (ModB.FactorialInverse(m).val * ModB.FactorialInverse(n-m).val)if 0<=m<=n else ModB(0,True)
#private:
def ref(n):
return n if n.__class__ == __class__ else ModB(n)
def copy(n):return n.copy()if hasattr(n,"copy")else n
class TwoByTwoMatrix:
zero=None
one=None
def __init__(self,M00,M01,M10,M11):
self.M00 = copy(M00)
self.M01 = copy(M01)
self.M10 = copy(M10)
self.M11 = copy(M11)
def copy(self):
return self.__class__(self.M00,self.M01,self.M10,self.M11)
def __eq__(self,other):
return self.M00 == other.M00 and self.M01 == other.M01 and self.M10 == other.M10 and self.M11 == other.M11
def __ne__(self,other):
return not( self == other )
def __iadd__(self,other):
self.M00 += other.M00
self.M01 += other.M01
self.M10 += other.M10
self.M11 += other.M11
return self
def __add__(self,other):
M = self.copy()
M += other
return M
def __isub__(self,other):
self.M00 -= other.M00
self.M01 -= other.M01
self.M10 -= other.M10
self.M11 -= other.M11
return self
def __sub__(self,other):
M = self.copy()
M -= other
return M
def __neg__(self):
return self.__class__(-self.M00,-self.M01,-self.M10,-self.M11)
def __mul__(self,other):
return self.__class__(self.M00 * other.M00 + self.M01 * other.M10,self.M00 * other.M01 + self.M01 * other.M11,self.M10 * other.M00 + self.M11 * other.M10,self.M10 * other.M01 + self.M11 * other.M11)
def __imul__(self,other):
self.M00 , self.M01 , self.M10 , self.M11 = self.M00 * other.M00 + self.M01 * other.M10 , self.M00 * other.M01 + self.M01 * other.M11 , self.M10 * other.M00 + self.M11 * other.M10 , self.M10 * other.M01 + self.M11 * other.M11
return self
def ScalarMultiply(self,x):
self.M00 *= x
self.M01 *= x
self.M10 *= x
self.M11 *= x
return self
def det(self):
return self.M00 * self.M11 - self.M01 * self.M10
def tr(self):
return self.M00 + self.M11
def Adjugate(self):
return self.__class__( self.M11 , - self.M01 , - self.M10 , self.M00 )
def Inverse(self):
return self.Adjugate().ScalarMultiply( 1 / self.det() )
#d = self.det()
#assert( d in [1,-1] ) #For the case of integer coefficients
#return self.Adjugate().ScalarMultiply( d )
def __truediv__(self,other):
return self * other.Inverse()
def __itruediv__(self,other):
self *= other.Inverse()
return self
def __pow__(self,n): #Supported only when n>=0
answer = self.__class__.one.copy()
power = self.copy()
while n > 0:
if n&1:answer *= power
power.Square()
n >>= 1
return answer
def __xor__(self,n):
return self.Inverse()**(-n)if n < 0 else self ** n
#private:
def Square(self):
self.M00 , self.M01 , self.M10 , self.M11 = self.M00 ** 2 + self.M01 * self.M10 , ( self.M00 + self.M11 ) * self.M01 , self.M10 * ( self.M00 + self.M11 ) , self.M10 * self.M01 + self.M11 ** 2
TwoByTwoMatrix.zero = TwoByTwoMatrix(0,0,0,0) #User's definition
TwoByTwoMatrix.one = TwoByTwoMatrix(1,0,0,1) #User's definition
R=range
J=lambda:[[ModB(x,1)for x in map(int,input().split())]for i in R(2)]
A=J();A=TwoByTwoMatrix(*(A[0]+A[1]))
B=J();B=TwoByTwoMatrix(*(B[0]+B[1]))
P=TwoByTwoMatrix(ModB(0,1),ModB(0,1),ModB(0,1),ModB(0,1))
L=R(109)
for a in R(2):
for b in L:
for c in L:
for d in L:
if P.det()!=ModB(0,1)and P*A==B*P:exit(print("Yes"))
P.M11+=ModB(1,1)
P.M10+=ModB(1,1)
P.M01+=ModB(1,1)
P.M00+=ModB(1,1)
print("No")