結果
| 問題 |
No.3225 2×2行列相似判定 〜easy〜
|
| コンテスト | |
| ユーザー |
ジュ・ビオレ・グレイス
|
| 提出日時 | 2025-07-25 12:55:37 |
| 言語 | D (dmd 2.109.1) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 3,406 bytes |
| コンパイル時間 | 571 ms |
| コンパイル使用メモリ | 87,944 KB |
| 実行使用メモリ | 18,112 KB |
| 最終ジャッジ日時 | 2025-07-27 20:11:55 |
| 合計ジャッジ時間 | 7,024 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | TLE * 3 |
| other | AC * 6 TLE * 27 |
ソースコード
import std.stdio, std.algorithm, std.array, std.conv, std.typecons;
immutable p = 181;
alias F = FiniteField!p;
void main() {
Matrix A, B;
{
auto tmp = readln.split.to!(int[]);
A[0][0] = F(tmp[0]), A[0][1] = F(tmp[1]);
}
{
auto tmp = readln.split.to!(int[]);
A[1][0] = F(tmp[0]), A[1][1] = F(tmp[1]);
}
{
auto tmp = readln.split.to!(int[]);
B[0][0] = F(tmp[0]), B[0][1] = F(tmp[1]);
}
{
auto tmp = readln.split.to!(int[]);
B[1][0] = F(tmp[0]), B[1][1] = F(tmp[1]);
}
writeln(is_similar(A, B) ? "Yes" : "No");
}
bool is_similar(Matrix A, Matrix B) {
foreach (a; 0 .. 2) foreach (b; 0 .. p) foreach (c; 0 .. p) foreach (d; 0 .. p) if (F(a*d - b*c) != F(0)) {
Matrix P;
P[0][0] = F(a), P[0][1] = F(b),
P[1][0] = F(c), P[1][1] = F(d);
auto M = multiply(P, A);
auto N = multiply(B, P);
if (M[0][0] == N[0][0] && M[1][0] == N[1][0] && M[0][1] == N[0][1] && M[1][1] == N[1][1]) return true;
}
return false;
}
alias Matrix = F[2][2];
Matrix multiply(Matrix a, Matrix b) {
Matrix c;
c[0][0] = a[0][0]*b[0][0] + a[0][1]*b[1][0], c[0][1] = a[0][0]*b[0][1] + a[0][1]*b[1][1],
c[1][0] = a[1][0]*b[0][0] + a[1][1]*b[1][0], c[1][1] = a[1][0]*b[0][1] + a[1][1]*b[1][1];
return c;
}
// the struct of finite fields with p elements
// p must be a prime number
struct FiniteField(long p)
if (p > 1)
{
ulong n;
this(long n) {
if (n < 0) this.n = n%p + p;
else this.n = n%p;
}
FiniteField!p opUnary(string op: "+")() {
return this;
}
FiniteField!p opUnary(string op: "-")() {
return FiniteField!p(-n);
}
FiniteField!p opBinary(string op)(long rhs) {
static if (op == "^^") {
if (rhs < 0) { return this.inv() ^^ rhs; }
auto result = FiniteField!p(1);
auto i = 0, pow_2_i = this; // pow_2_i = n^{2^i}
rhs %= (p-1);
while (rhs > 0) {
if (rhs % 2 == 1) {
result = result * pow_2_i;
}
rhs >>= 1;
i++;
pow_2_i = pow_2_i * pow_2_i;
}
return result;
}
else {
return this.opBinary!op(FiniteField!p(rhs));
}
}
FiniteField!p opBinary(string op)(FiniteField!p rhs) {
auto result = this;
static if (op == "+") {
result.n = (result.n + rhs.n) % p;
}
else if (op == "-") {
result.n = (result.n + p - rhs.n) % p;
}
else if (op == "*") {
result.n = (result.n * rhs.n) % p;
}
else if (op == "/") {
assert (rhs.n != 0);
result.n = (result.n * rhs.inv().n) % p;
}
else assert(0);
return result;
}
FiniteField!p opOpAssign(string op)(long rhs) {
return this = this.opBinary!op(rhs);
}
FiniteField!p opOpAssign(string op)(FiniteField!p rhs) {
return this = this.opBinary!op(rhs);
}
bool opEquals(FiniteField!p rhs) {
return (this.n + p - rhs.n) % p == 0;
}
bool opEquals(long rhs) {
return (this.n + p - rhs) % p == 0;
}
FiniteField!p inv() {
assert (this.n != 0);
return this ^^ (p-2);
}
string toString() {
import std.conv: to;
return n.to!string;
}
}
ジュ・ビオレ・グレイス