結果
| 問題 |
No.3215 Make K types-able
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-26 03:02:59 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 137 ms / 4,000 ms |
| コード長 | 11,186 bytes |
| コンパイル時間 | 7,361 ms |
| コンパイル使用メモリ | 358,916 KB |
| 実行使用メモリ | 17,348 KB |
| 最終ジャッジ日時 | 2025-11-03 07:36:46 |
| 合計ジャッジ時間 | 8,957 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
ソースコード
#define USE_ACLIBRARY 0
#if __has_include("all.hpp") && 0
#include "all.hpp"
#else
#include <bits/extc++.h>
#if __has_include(<atcoder/all>) || USE_ACLIBRARY
#include <atcoder/all>
#endif
#endif
using ll = long long int;
using pll = std::pair<ll, ll>;
using pil = std::pair<int, ll>;
using pli = std::pair<ll, int>;
using pii = std::pair<int, int>;
using namespace std::literals;
template <class T>
bool chmin(T &x, const T &val) {
if (x > val) {
x = val;
return true;
} else {
return false;
}
}
template <class T>
bool chmax(T &x, const T &val) {
if (x < val) {
x = val;
return true;
} else {
return false;
}
}
ll isqrt(ll n) {
assert(n >= 0);
if (n == 0) return 0;
uint32_t c = (std::bit_width(uint64_t(n)) - 1) / 2;
ll a = 1;
ll d = 0;
for (int s = std::bit_width(c) - 1; s >= 0; s--) {
ll e = d;
d = c >> s;
a = (a << (d - e - 1)) + (n >> (2 * c - e - d + 1)) / a;
}
return a - (a * a > n);
}
#if __has_include(<atcoder/all>) || USE_ACLIBRARY
template <class mint, atcoder::internal::is_static_modint_t<mint> * = nullptr>
std::ostream &operator<<(std::ostream &os, const mint &v) {
return os << v.val();
}
template <class mint, atcoder::internal::is_static_modint_t<mint> * = nullptr>
std::istream &operator>>(std::istream &is, mint &v) {
int tmp;
is >> tmp;
v = tmp;
return is;
}
#endif
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
return is >> p.first >> p.second;
}
template <class... T>
std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) {
std::apply([&](auto &&...args) { (is >> ... >> args); }, tpl);
return is;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for (T &x : v) is >> x;
return is;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
for (size_t i = 0; i < v.size(); i++)
os << v[i] << (i == v.size() - 1 ? "" : " ");
return os;
}
struct Initialization {
Initialization() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
}
} initialization;
constexpr std::pair<int, int> dir[] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
template <typename T>
using infs = std::numeric_limits<T>;
template <typename T>
class factorials {
public:
static size_t n;
static std::vector<T> fact, inv_fact;
static inline void extend(size_t m) {
if (m <= n) return;
fact.resize(m + 1);
inv_fact.resize(m + 1);
for (size_t i = n + 1; i <= m; i++) fact[i] = fact[i - 1] * i;
inv_fact[m] = fact[m].inv();
for (size_t i = m; i > n + 1; i--) inv_fact[i - 1] = inv_fact[i] * i;
n = m;
}
static T inv(int k) {
extend(k);
return inv_fact[k];
}
static T get(int k) {
extend(k);
return fact[k];
}
static T perm(int n, int k) {
if (n < k) return 0;
if (k < 0) return 0;
extend(n);
return fact[n] * inv_fact[n - k];
}
static T choose(int n, int k) {
if (n < k) return 0;
if (k < 0) return 0;
extend(n);
return fact[n] * inv_fact[n - k] * inv_fact[k];
}
static T catalan(int n) { return get(2 * n) * inv(n + 1) * inv(n); }
};
template <typename T>
size_t factorials<T>::n = 0;
template <typename T>
std::vector<T> factorials<T>::fact = {1};
template <typename T>
std::vector<T> factorials<T>::inv_fact = {1};
#if __has_include(<atcoder/all>) || USE_ACLIBRARY
using mint = atcoder::modint998244353;
// using mint = atcoder::modint1000000007;
using fs = factorials<mint>;
#endif
template <typename T>
using pq_rev = std::priority_queue<T, std::vector<T>, std::greater<T>>;
namespace pbds = __gnu_pbds;
template <typename T>
using tree = pbds::tree<T, pbds::null_type, std::less<T>, pbds::rb_tree_tag,
pbds::tree_order_statistics_node_update>;
// ========= fps.hpp ========= {{{
template <typename T>
class formal_power_series {
std::vector<T> v;
using fps = formal_power_series;
public:
using value_type = T;
using reference = T &;
using const_reference = const T &;
using iterator = typename std::vector<T>::iterator;
using const_iterator = typename std::vector<T>::const_iterator;
size_t size() const { return v.size(); }
const std::vector<T> &data() const { return v; }
explicit formal_power_series(int n) : v(n) {}
formal_power_series(int n, T val) : v(n, val) {}
formal_power_series(const std::vector<T> &v) : v(v) {}
formal_power_series(std::vector<T> &&v) : v(v) {}
template <class InputIterator>
formal_power_series(InputIterator first, InputIterator last)
: v(first, last) {}
formal_power_series(std::initializer_list<T> init) : v(init) {}
inline void resize(int n) { v.resize(n); }
inline T &operator[](int i) { return v[i]; }
inline iterator begin() { return v.begin(); }
inline const_iterator begin() const { return v.begin(); }
inline iterator end() { return v.end(); }
inline const_iterator end() const { return v.end(); }
fps take(int n) const {
fps res(v.begin(), v.begin() + std::min(n, (int)v.size()));
res.resize(n);
return res;
}
fps diff() const {
std::vector<T> res(v.size() - 1);
for (int i = 0; i < res.size(); i++) res[i] = v[i + 1] * (i + 1);
return fps(res);
}
fps integral() const {
std::vector<T> res(v.size() + 1);
for (int i = 0; i < v.size(); i++) res[i + 1] = v[i] / (i + 1);
return fps(res);
}
fps inv(int deg = -1) const {
assert(v[0] != 0);
if (deg == -1) deg = size();
std::vector<T> res(deg);
res[0] = v[0].inv();
T inv4 = T(4).inv(), invd = inv4;
for (int d = 1; d < deg; d <<= 1) {
std::vector<T> f(2 * d), g(2 * d);
std::copy(v.begin(), v.begin() + std::min(2 * d, (int)v.size()),
f.begin());
std::copy(res.begin(), res.begin() + d, g.begin());
atcoder::internal::butterfly(f);
atcoder::internal::butterfly(g);
for (int i = 0; i < 2 * d; i++) f[i] *= g[i];
atcoder::internal::butterfly_inv(f);
for (int i = 0; i < d; i++) f[i] = 0;
atcoder::internal::butterfly(f);
for (int i = 0; i < 2 * d; i++) f[i] *= g[i];
atcoder::internal::butterfly_inv(f);
for (int i = d; i < std::min(2 * d, deg); i++) res[i] = -f[i] * invd;
invd *= inv4;
}
return res;
}
fps log(int deg = -1) const {
assert(v[0] == 1);
if (deg == -1) deg = size();
return (this->diff() * this->inv(deg)).take(deg - 1).integral();
}
fps exp(int deg = -1) const {
assert(v[0] == 0);
if (deg == -1) deg = size();
fps g = {1};
for (int d = 1; d < deg; d <<= 1) {
fps tmp = -g.log(2 * d);
tmp += 1;
tmp.trunc_add(*this);
g *= tmp;
g.resize(2 * d);
}
g.resize(deg);
return g;
}
fps pow(ll n, int deg = -1) const {
if (deg == -1) deg = size();
if (n == 0) return fps({1}).take(deg);
if (n == 1) return this->take(deg);
for (int i = 0; i < v.size(); i++) {
if (ll(i) * n >= deg) {
break;
}
if (v[i] != 0) {
fps res(begin() + i, end());
res /= v[i];
res = (res.log(deg) * n).exp(deg);
res *= v[i].pow(n);
res.v.insert(res.v.begin(), i * n, 0);
res.resize(deg);
return res;
}
}
return fps(deg);
}
fps shift(T c) const {
std::vector<T> res(size()), ifacts(size());
factorials<T>::extend(size());
T x = 1;
for (int i = 0; i < size(); i++) {
ifacts[i] = x * factorials<T>::inv(i);
x *= c;
}
for (int i = 0; i < size(); i++) {
res[size() - 1 - i] = v[i] * factorials<T>::get(i);
}
res = atcoder::convolution(res, ifacts);
res.resize(size());
std::ranges::reverse(res);
for (int i = 0; i < size(); i++) {
res[i] *= factorials<T>::inv(i);
}
return res;
}
fps &trunc_add(const fps &rhs) {
for (int i = 0; i < v.size() && i < rhs.size(); i++) v[i] += rhs.v[i];
return *this;
}
fps operator-() const {
fps res(v.size());
for (int i = 0; i < v.size(); i++) res[i] = -v[i];
return res;
}
fps &operator+=(const fps &rhs) {
if (v.size() < rhs.v.size()) v.resize(rhs.v.size());
for (int i = 0; i < rhs.v.size(); i++) v[i] += rhs.v[i];
return *this;
}
fps &operator-=(const fps &rhs) {
if (v.size() < rhs.v.size()) v.resize(rhs.v.size());
for (int i = 0; i < rhs.v.size(); i++) v[i] -= rhs.v[i];
return *this;
}
fps &operator*=(const fps &rhs) {
return *this = atcoder::convolution(v, rhs.v);
}
fps &operator/=(const fps &rhs) { return *this *= rhs.inv(); }
fps &operator+=(const T &rhs) {
if (v.size() == 0) v.resize(1);
v[0] += rhs;
return *this;
}
fps &operator-=(const T &rhs) {
if (v.size() == 0) v.resize(1);
v[0] -= rhs;
return *this;
}
fps &operator*=(const T &rhs) {
for (int i = 0; i < v.size(); i++) v[i] *= rhs;
return *this;
}
fps &operator/=(const T &rhs) {
T rhs_inv = rhs.inv();
for (int i = 0; i < v.size(); i++) v[i] *= rhs_inv;
return *this;
}
friend fps operator+(const fps &lhs, const fps &rhs) {
return fps(lhs) += rhs;
}
friend fps operator-(const fps &lhs, const fps &rhs) {
return fps(lhs) -= rhs;
}
friend fps operator*(const fps &lhs, const fps &rhs) {
return fps(lhs) *= rhs;
}
friend fps operator/(const fps &lhs, const fps &rhs) {
return fps(lhs) /= rhs;
}
friend fps operator+(const fps &lhs, const T &rhs) { return fps(lhs) += rhs; }
friend fps operator-(const fps &lhs, const T &rhs) { return fps(lhs) -= rhs; }
friend fps operator*(const fps &lhs, const T &rhs) { return fps(lhs) *= rhs; }
friend fps operator/(const fps &lhs, const T &rhs) { return fps(lhs) /= rhs; }
friend fps operator+(const T &lhs, const fps &rhs) { return fps(rhs) += lhs; }
friend fps operator-(const T &lhs, const fps &rhs) {
return -(fps(rhs) -= lhs);
}
friend fps operator*(const T &lhs, const fps &rhs) { return fps(rhs) *= lhs; }
};
template <typename T>
T bostan_mori(int n, formal_power_series<T> P, formal_power_series<T> Q) {
assert(P.size() < Q.size());
P.resize(Q.size() - 1);
while (n) {
formal_power_series<mint> qm = Q;
for (int i = 1; i < Q.size(); i += 2) qm[i] = -qm[i];
formal_power_series<mint> U = P * qm;
formal_power_series<mint> V = Q * qm;
for (int i = n & 1; i < U.size(); i += 2) P[i / 2] = U[i];
for (int i = 0; i < V.size(); i += 2) Q[i / 2] = V[i];
n /= 2;
}
return P[0] / Q[0];
}
// ========= fps.hpp ========= }}}
using fps = formal_power_series<mint>;
int main() {
int N = 200000;
int K = 10;
std::vector<fps> fs(N, fps(K));
fs[0][0] = 1;
fs[0][1] = 1;
mint m = 4;
for (int i = 1; i < N; i++) {
fs[i] = (fs[i - 1] * fs[i - 1]).take(K);
fs[i][0] += m;
m *= 2;
m *= m;
}
int T;
std::cin >> T;
while (T--) {
int N, K;
std::cin >> N >> K;
// std::cerr << fs[N - 1].data() << '\n';
if (K == 0) {
std::cout << 1 << '\n';
} else {
std::cout << fs[N - 1][K - 1] << '\n';
}
}
}