結果
| 問題 |
No.2717 Sum of Subarray of Subsequence
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-26 15:15:38 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 344 ms / 2,000 ms |
| コード長 | 19,548 bytes |
| コンパイル時間 | 4,581 ms |
| コンパイル使用メモリ | 268,784 KB |
| 実行使用メモリ | 19,796 KB |
| 最終ジャッジ日時 | 2025-07-26 15:15:50 |
| 合計ジャッジ時間 | 11,554 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<(int)1e9+7>;
//using mint = modint; // mint::set_mod(m);
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
int mute_dump = 0;
int frac_print = 0;
#if __has_include(<atcoder/all>)
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
#endif
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
// 愚直
mint naive(const vm& a) {
int n = sz(a);
mint res;
repb(set, n) {
vm b;
repis(i, set) b.push_back(a[i]);
int m = sz(b);
rep(l, m) repi(r, l + 1, m) {
repi(j, l, r - 1) res += b[j];
}
}
return res;
}
// 寄与係数を求める.
void zikken() {
int N = 20;
vvm tbl(N);
repi(n, 1, N) {
dump("n:", n);
tbl[n - 1].resize(n);
rep(i, n) {
vm a(n);
a[i] = 1;
tbl[n - 1][i] = naive(a);
}
}
dumpel(tbl);
dump_math(tbl);
exit(0);
}
/*
0: 1
1: 3 3
2: 8 9 8
3: 20 24 24 20
4: 48 60 64 60 48
5: 112 144 160 160 144 112
6: 256 336 384 400 384 336 256
7: 576 768 896 960 960 896 768 576
8: 1280 1728 2048 2240 2304 2240 2048 1728 1280
9: 2816 3840 4608 5120 5376 5376 5120 4608 3840 2816
10: 6144 8448 10240 11520 12288 12544 12288 11520 10240 8448 6144
11: 13312 18432 22528 25600 27648 28672 28672 27648 25600 22528 18432 13312
12: 28672 39936 49152 56320 61440 64512 65536 64512 61440 56320 49152 39936 28672
13: 61440 86016 106496 122880 135168 143360 147456 147456 143360 135168 122880 106496 86016 61440
14: 131072 184320 229376 266240 294912 315392 327680 331776 327680 315392 294912 266240 229376 184320 131072
15: 278528 393216 491520 573440 638976 688128 720896 737280 737280 720896 688128 638976 573440 491520 393216 278528
16: 589824 835584 1048576 1228800 1376256 1490944 1572864 1622016 1638400 1622016 1572864 1490944 1376256 1228800 1048576 835584 589824
17: 1245184 1769472 2228224 2621440 2949120 3211264 3407872 3538944 3604480 3604480 3538944 3407872 3211264 2949120 2621440 2228224 1769472 1245184
18: 2621440 3735552 4718592 5570560 6291456 6881280 7340032 7667712 7864320 7929856 7864320 7667712 7340032 6881280 6291456 5570560 4718592 3735552 2621440
19: 5505024 7864320 9961472 11796480 13369344 14680064 15728640 16515072 17039360 17301504 17301504 17039360 16515072 15728640 14680064 13369344 11796480 9961472 7864320 5505024
{{1},{3,3},{8,9,8},{20,24,24,20},{48,60,64,60,48},{112,144,160,160,144,112},{256,336,384,400,384,336,256},{576,768,896,960,960,896,768,576},{1280,1728,2048,2240,2304,2240,2048,1728,1280},{2816,3840,4608,5120,5376,5376,5120,4608,3840,2816},{6144,8448,10240,11520,12288,12544,12288,11520,10240,8448,6144},{13312,18432,22528,25600,27648,28672,28672,27648,25600,22528,18432,13312},{28672,39936,49152,56320,61440,64512,65536,64512,61440,56320,49152,39936,28672},{61440,86016,106496,122880,135168,143360,147456,147456,143360,135168,122880,106496,86016,61440},{131072,184320,229376,266240,294912,315392,327680,331776,327680,315392,294912,266240,229376,184320,131072},{278528,393216,491520,573440,638976,688128,720896,737280,737280,720896,688128,638976,573440,491520,393216,278528},{589824,835584,1048576,1228800,1376256,1490944,1572864,1622016,1638400,1622016,1572864,1490944,1376256,1228800,1048576,835584,589824},{1245184,1769472,2228224,2621440,2949120,3211264,3407872,3538944,3604480,3604480,3538944,3407872,3211264,2949120,2621440,2228224,1769472,1245184},{2621440,3735552,4718592,5570560,6291456,6881280,7340032,7667712,7864320,7929856,7864320,7667712,7340032,6881280,6291456,5570560,4718592,3735552,2621440},{5505024,7864320,9961472,11796480,13369344,14680064,15728640,16515072,17039360,17301504,17301504,17039360,16515072,15728640,14680064,13369344,11796480,9961472,7864320,5505024}};
これを P-recursive で適当に延長すればいい.
*/
//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
* n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
* n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
* 二次元配列 a[0..n)[0..m) の要素で初期化する.
*
* bool empty() : O(1)
* 行列が空かを返す.
*
* A + B : O(n m)
* n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
* n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
* n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
* n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)(やや遅い)
* m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
* n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
* 自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
int n, m; // 行列のサイズ(n 行 m 列)
vector<vector<T>> v; // 行列の成分
// n×m 零行列で初期化する.
Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}
// n×n 単位行列で初期化する.
Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }
// 二次元配列 a[0..n)[0..m) の要素で初期化する.
Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
Matrix() : n(0), m(0) {}
// 代入
Matrix(const Matrix&) = default;
Matrix& operator=(const Matrix&) = default;
// アクセス
inline vector<T> const& operator[](int i) const { return v[i]; }
inline vector<T>& operator[](int i) {
// verify : https://judge.yosupo.jp/problem/matrix_product
// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
return v[i];
}
// 入力
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
return is;
}
// 行の追加
void push_back(const vector<T>& a) {
Assert(sz(a) == m);
v.push_back(a);
n++;
}
// 行の削除
void pop_back() {
Assert(n > 0);
v.pop_back();
n--;
}
// サイズ変更
void resize(int n_) {
v.resize(n_);
n = n_;
}
void resize(int n_, int m_) {
n = n_;
m = m_;
v.resize(n);
rep(i, n) v[i].resize(m);
}
// 空か
bool empty() const { return min(n, m) == 0; }
// 比較
bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Matrix& operator+=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] += b[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] -= b[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, n) rep(j, m) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(n);
rep(i, n) rep(j, m) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.m);
rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://judge.yosupo.jp/problem/matrix_product
Matrix res(n, b.m);
rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Matrix pow(ll d) const {
// verify : https://judge.yosupo.jp/problem/pow_of_matrix
Matrix res(n), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d >>= 1;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.n) {
os << "[";
rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
if (i < a.n - 1) os << "\n";
}
return os;
}
#endif
};
//【線形方程式】O(n m min(n, m))
/*
* 与えられた n×m 行列 A と n 次元ベクトル b に対し,
* 線形方程式 A x = b の特殊解 x0(m 次元ベクトル)を返す(なければ空リスト)
* また同次形 A x = 0 の解空間の基底(m 次元ベクトル)のリストを xs に格納する.
*/
template <class T>
vector<T> gauss_jordan_elimination(const Matrix<T>& A, const vector<T>& b, vector<vector<T>>* xs = nullptr) {
// verify : https://judge.yosupo.jp/problem/system_of_linear_equations
int n = A.n, m = A.m;
// v : 拡大係数行列 (A | b)
vector<vector<T>> v(n, vector<T>(m + 1));
rep(i, n) rep(j, m) v[i][j] = A[i][j];
rep(i, n) v[i][m] = b[i];
// pivots[i] : 第 i 行のピボットが第何列にあるか
vi pivots;
// 注目位置を v[i][j] とする.
int i = 0, j = 0;
while (i < n && j <= m) {
// 注目列の下方の行から非 0 成分を見つける.
int i2 = i;
while (i2 < n && v[i2][j] == T(0)) i2++;
// 見つからなかったら注目位置を右に移す.
if (i2 == n) { j++; continue; }
// 見つかったら第 i 行とその行を入れ替える.
if (i != i2) swap(v[i], v[i2]);
// v[i][j] をピボットに選択する.
pivots.push_back(j);
// v[i][j] が 1 になるよう第 i 行全体を v[i][j] で割る.
T vij_inv = T(1) / v[i][j];
repi(j2, j, m) v[i][j2] *= vij_inv;
// 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる.
rep(i2, n) {
if (v[i2][j] == T(0) || i2 == i) continue;
T mul = v[i2][j];
repi(j2, j, m) v[i2][j2] -= v[i][j2] * mul;
}
// 注目位置を右下に移す.
i++; j++;
}
// 最後に見つかったピボットの位置が第 m 列ならば解なし.
if (!pivots.empty() && pivots.back() == m) return vector<T>();
// A x = b の特殊解 x0 の構成(任意定数は全て 0 にする)
vector<T> x0(m);
int rnk = sz(pivots);
rep(i, rnk) x0[pivots[i]] = v[i][m];
// 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする)
if (xs != nullptr) {
xs->clear();
int i = 0;
rep(j, m) {
if (i < rnk && j == pivots[i]) {
i++;
continue;
}
vector<T> x(m);
x[j] = T(1);
rep(i2, i) x[pivots[i2]] = -v[i2][j];
xs->emplace_back(move(x));
}
}
return x0;
}
//【変数係数線形漸化式の発見】O(n L^2 D^2 + N (L D + log(mod)))
/*
* 係数多項式の次数が D 次未満の L 項間漸化式
* Σi∈[0..L) Σj∈[0..D) c(i,j) (m+i)^j a[m+i] = 0
* の存在を仮定して a[0..n) を延長し a[0..N] にする(失敗したら false を返す)
*
* 制約 : n ≧ L(D+1)-1(ランク落ちしてるとこれでも足りないかも)
*
* 利用:【行列】,【線形方程式】
*/
bool p_recursive(int N, vm& a, int L, int D, vm* coef = nullptr) {
// verify : https://atcoder.jp/contests/abc222/tasks/abc222_h
int n = sz(a);
// 既に十分な長さがある場合はそのままで良い.
if (N <= n - 1) {
a.resize(N + 1);
return true;
}
// 式が足りないといつでも非自明解をもってしまって意味がない(とも限らない → LLL)
if (n < L * (D + 1) - 1) return false;
// 行列方程式 A x = 0 を解いて一般解の基底 xs を求める.
Matrix<mint> A(n - L + 1, L * D);
repi(n0, 0, n - L) {
rep(i, L) rep(j, D) {
A[n0][i * D + j] = mint(n0 + i).pow(j) * a[n0 + i];
}
}
vvm xs;
gauss_jordan_elimination(A, vm(n - L + 1), &xs);
// 自明解 x = 0 しか存在しない場合は失敗.
if (xs.empty()) return false;
a.resize(N + 1);
// 得られた非自明解 xs.back() から漸化式を復元し,それに基づき a[0..n) を延長する.
auto& x = xs.back(); // back() が良いとは限らない
repi(n0, n - L + 1, N - L + 1) {
mint num = 0;
rep(i, L - 1) {
mint pow_n0i = 1;
rep(j, D) {
num += x[i * D + j] * pow_n0i * a[n0 + i];
pow_n0i *= n0 + i;
}
}
mint dnm = 0;
mint pow_n0L = 1;
rep(j, D) {
dnm += x[(L - 1) * D + j] * pow_n0L;
pow_n0L *= n0 + L - 1;
}
// num + dnm * a[n0 + L - 1] = 0 を解く.
// dnm は規則正しいことが多いので O(log(mod)) が落とせるかも.
a[n0 + L - 1] = -num / dnm;
}
if (coef) *coef = move(x);
return true;
}
vvm dp = { {},{1},{3,3},{8,9,8},{20,24,24,20},{48,60,64,60,48},{112,144,160,160,144,112},{256,336,384,400,384,336,256},{576,768,896,960,960,896,768,576},{1280,1728,2048,2240,2304,2240,2048,1728,1280},{2816,3840,4608,5120,5376,5376,5120,4608,3840,2816},{6144,8448,10240,11520,12288,12544,12288,11520,10240,8448,6144},{13312,18432,22528,25600,27648,28672,28672,27648,25600,22528,18432,13312},{28672,39936,49152,56320,61440,64512,65536,64512,61440,56320,49152,39936,28672},{61440,86016,106496,122880,135168,143360,147456,147456,143360,135168,122880,106496,86016,61440},{131072,184320,229376,266240,294912,315392,327680,331776,327680,315392,294912,266240,229376,184320,131072},{278528,393216,491520,573440,638976,688128,720896,737280,737280,720896,688128,638976,573440,491520,393216,278528},{589824,835584,1048576,1228800,1376256,1490944,1572864,1622016,1638400,1622016,1572864,1490944,1376256,1228800,1048576,835584,589824},{1245184,1769472,2228224,2621440,2949120,3211264,3407872,3538944,3604480,3604480,3538944,3407872,3211264,2949120,2621440,2228224,1769472,1245184},{2621440,3735552,4718592,5570560,6291456,6881280,7340032,7667712,7864320,7929856,7864320,7667712,7340032,6881280,6291456,5570560,4718592,3735552,2621440},{5505024,7864320,9961472,11796480,13369344,14680064,15728640,16515072,17039360,17301504,17301504,17039360,16515072,15728640,14680064,13369344,11796480,9961472,7864320,5505024} };
// 寄与係数のリストを返す.
vm solve(int n) {
int N = sz(dp);
if (n < N) return dp[n];
// 横方向に延長するために必要な初項の量
int iniM = 7;
dp.resize(n + 1);
repi(i, 0, n) dp[i].resize(iniM);
// 縦方向に延長する.
rep(j, iniM) {
vm seq;
repi(i, j + 1, N - 1) seq.push_back(dp[i][j]);
if (!p_recursive(n, seq, 2, 2)) {
dump("j:", j, "failed");
exit(-1);
}
repi(i, j + 1, n) dp[i][j] = seq[i - (j + 1)];
}
// dumpel(dp);
// 横方向に延長する.
if (!p_recursive(n - 1, dp[n], 2, 3)) {
dump("failed");
exit(-1);
}
return dp[n];
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
// zikken();
int n;
cin >> n;
auto coef = solve(n);
vm a(n);
cin >> a;
mint res = 0;
rep(i, n) res += coef[i] * a[i];
EXIT(res);
}