結果

問題 No.3227 Matrix Query
ユーザー 👑 p-adic
提出日時 2025-07-29 17:53:06
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 329 ms / 8,000 ms
コード長 51,994 bytes
コンパイル時間 11,736 ms
コンパイル使用メモリ 248,776 KB
実行使用メモリ 7,716 KB
最終ジャッジ日時 2025-07-30 16:20:43
合計ジャッジ時間 20,216 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef INCLUDE_MODE
  #define INCLUDE_MODE
  /* #define SUBMIT_ONLY */
  #define DEBUG_OUTPUT
#endif
#ifdef INCLUDE_MAIN

VO Solve()
{
  CIN( int , K , N );
  DynamicMod::SetModulo( K );
  using T = TwoByTwoMatrix<DynamicMod>;
  vector<T> A( N );
  FOR( i , 0 , N ){
    CIN_AA( DynamicMod , 0 , 2 , 0 , 2 , Ai );
    A[i] = { Ai[0][0] , Ai[0][1] , Ai[1][0] , Ai[1][1] };
  }
  CIN( int , Q ); // 入力受け取り順に注意
  AbstractSegmentTree X{ MultiplicativeMonoid( decldecay_t(A[0]){ 1 , 0 , 0 , 1 } ) , A };
  FOR( q , 0 , Q ){
    CIN( int , i , l , r ); --i; --l; --r;
    CIN_AA( DynamicMod , 0 , 2 , 0 , 2 , Ai );
    X.Set( i , T{ Ai[0][0] , Ai[0][1] , Ai[1][0] , Ai[1][1] } );
    auto B = X.IntervalProduct( l , r );
    COUT( B );
  }
}
REPEAT_MAIN(1);

#else /* INCLUDE_MAIN */
#ifdef INCLUDE_SUB



/* 圧縮時は中身だけ削除する。*/
IN VO Experiment()
{
  
}

/* 圧縮時は中身だけ削除する。*/
IN VO SmallTest()
{

  CERR( "全ての出力が一致しました。" );
}

/* 圧縮時は中身だけ削除する。*/
IN VO RandomTest( const int& test_case_num )
{
  REPEAT( test_case_num ){

  }
  CERR( "全ての出力が一致しました。" );
}

#define INCLUDE_MAIN
#include __FILE__
#else /* INCLUDE_SUB */
#ifdef INCLUDE_LIBRARY

/* VVV 常設でないライブラリは以下に挿入する。*/



#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/DynamicModulo/Debug/a_Body.hpp"
#else

TE <TY INT1,TY INT2> CE INT1 Residue(INT1 n,CO INT2& M)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < M?n:n %= M);}

TE <int NUM> CL DynamicMods;TE <int NUM>CL COantsForDynamicMods{PU:COantsForDynamicMods()= delete;ST uint g_M;ST CE CO uint g_memory_bound = 2e6;ST uint g_memory_le;ST uint g_M_minus;ST int g_order;ST int g_order_minus;ST bool g_M_is_prime;};
TE <int NUM> uint COantsForDynamicMods<NUM>::g_M = 0;TE <int NUM> uint COantsForDynamicMods<NUM>::g_memory_le = 0;TE <int NUM> uint COantsForDynamicMods<NUM>::g_M_minus = -1;TE <int NUM> int COantsForDynamicMods<NUM>::g_order = 1;TE <int NUM> int COantsForDynamicMods<NUM>::g_order_minus = 0;TE <int NUM> bool COantsForDynamicMods<NUM>::g_M_is_prime = false;

#define SFINAE_FOR_DMOD enable_if_t<is_COructible_v<uint,decay_t<T>>>*
#define DC_OF_CM_FOR_DYNAMIC_MOD(OPR)IN bool OP OPR(CO DynamicMods<NUM>& n)CO NE
#define DC_OF_AR_FOR_DYNAMIC_MOD(OPR,EX)IN DynamicMods<NUM> OP OPR(DynamicMods<NUM> n)CO EX;
#define DF_OF_CM_FOR_DYNAMIC_MOD(OPR)TE <int NUM> IN bool DynamicMods<NUM>::OP OPR(CO DynamicMods<NUM>& n)CO NE{RE m_n OPR n.m_n;}
#define DF_OF_AR_FOR_DYNAMIC_MOD(OPR,EX,LEFT,OPR2)TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP OPR(DynamicMods<NUM> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <int NUM,TY T,SFINAE_FOR_DMOD = nullptr> IN DynamicMods<NUM> OP OPR(T n0,CO DynamicMods<NUM>& n1)EX{RE MO(DynamicMods<NUM>(MO(n0))OPR ## = n1);}
TE <int NUM>CL DynamicMods{PU:uint m_n;IN DynamicMods()NE;IN DynamicMods(CO DynamicMods<NUM>& n)NE;IN DynamicMods(DynamicMods<NUM>&& n)NE;TE <TY T,SFINAE_FOR_DMOD = nullptr> IN DynamicMods(T n)NE;IN DynamicMods<NUM>& OP=(DynamicMods<NUM> n)NE;IN DynamicMods<NUM>& OP+=(CO DynamicMods<NUM>& n)NE;IN DynamicMods<NUM>& OP-=(CO DynamicMods<NUM>& n)NE;IN DynamicMods<NUM>& OP*=(CO DynamicMods<NUM>& n)NE;IN DynamicMods<NUM>& OP/=(DynamicMods<NUM> n);TE <TY INT> IN DynamicMods<NUM>& OP<<=(INT n);TE <TY INT> IN DynamicMods<NUM>& OP>>=(INT n);IN DynamicMods<NUM>& OP++()NE;IN DynamicMods<NUM> OP++(int)NE;IN DynamicMods<NUM>& OP--()NE;IN DynamicMods<NUM> OP--(int)NE;DC_OF_CM_FOR_DYNAMIC_MOD(==);DC_OF_CM_FOR_DYNAMIC_MOD(!=);DC_OF_CM_FOR_DYNAMIC_MOD(<);DC_OF_CM_FOR_DYNAMIC_MOD(<=);DC_OF_CM_FOR_DYNAMIC_MOD(>);DC_OF_CM_FOR_DYNAMIC_MOD(>=);DC_OF_AR_FOR_DYNAMIC_MOD(+,NE);DC_OF_AR_FOR_DYNAMIC_MOD(-,NE);DC_OF_AR_FOR_DYNAMIC_MOD(*,NE);DC_OF_AR_FOR_DYNAMIC_MOD(/,);TE <TY INT> IN DynamicMods<NUM> OP^(INT EX)CO;TE <TY INT> IN DynamicMods<NUM> OP<<(INT n)CO;TE <TY INT> IN DynamicMods<NUM> OP>>(INT n)CO;IN DynamicMods<NUM> OP-()CO NE;IN DynamicMods<NUM>& SignInvert()NE;IN DynamicMods<NUM>& Invert();TE <TY INT> IN DynamicMods<NUM>& Power(INT EX);IN VO swap(DynamicMods<NUM>& n)NE;IN CRUI RP()CO NE;ST IN DynamicMods<NUM> DeRP(uint n)NE;ST IN CO DynamicMods<NUM>& Factorial(CRL n);ST IN CO DynamicMods<NUM>& FactorialInverse(CRL n);ST IN DynamicMods<NUM> Combination(CRL n,CRL i);ST IN CO DynamicMods<NUM>& zero()NE;ST IN CO DynamicMods<NUM>& one()NE;ST IN CRUI GetModulo()NE;ST IN VO SetModulo(CRUI M,CRI order_minus_1 = -1)NE;TE <TY INT> IN DynamicMods<NUM>& PositivePower(INT EX)NE;TE <TY INT> IN DynamicMods<NUM>& NonNegativePower(INT EX)NE;ST IN CO DynamicMods<NUM>& Inverse(CRI n);ST IN CO DynamicMods<NUM>& TwoPower(CRI n);US COants = COantsForDynamicMods<NUM>;};
US DynamicMod = DynamicMods<0>;
TE <int NUM> IN DynamicMods<NUM>::DynamicMods()NE:m_n(){}TE <int NUM> IN DynamicMods<NUM>::DynamicMods(CO DynamicMods<NUM>& n)NE:m_n(n.m_n){}TE <int NUM> IN DynamicMods<NUM>::DynamicMods(DynamicMods<NUM>&& n)NE:m_n(MO(n.m_n)){}TE <int NUM> TE <TY T,SFINAE_FOR_DMOD> IN DynamicMods<NUM>::DynamicMods(T n)NE:m_n(Residue(MO(n),COants::g_M)){}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP=(DynamicMods<NUM> n)NE{m_n = MO(n.m_n);RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP+=(CO DynamicMods<NUM>& n)NE{(m_n += n.m_n)< COants::g_M?m_n:m_n -= COants::g_M;RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP-=(CO DynamicMods<NUM>& n)NE{m_n < n.m_n?(m_n += COants::g_M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP*=(CO DynamicMods<NUM>& n)NE{m_n = Residue(MO(ull(m_n)* n.m_n),COants::g_M);RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP/=(DynamicMods<NUM> n){RE OP*=(n.Invert());}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::OP<<=(INT n){AS(n >= 0);RE *TH *= DynamicMods<NUM>(2).NonNegativePower(MO(n));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::OP>>=(INT n){AS(n >= 0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += COants::g_M)>>= 1;}RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP++(int)NE{DynamicMods<NUM> n{*TH};OP++();RE n;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP--(int)NE{DynamicMods<NUM> n{*TH};OP--();RE n;}DF_OF_CM_FOR_DYNAMIC_MOD(==);DF_OF_CM_FOR_DYNAMIC_MOD(!=);DF_OF_CM_FOR_DYNAMIC_MOD(>);DF_OF_CM_FOR_DYNAMIC_MOD(>=);DF_OF_CM_FOR_DYNAMIC_MOD(<);DF_OF_CM_FOR_DYNAMIC_MOD(<=);DF_OF_AR_FOR_DYNAMIC_MOD(+,NE,n,+);DF_OF_AR_FOR_DYNAMIC_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_DYNAMIC_MOD(*,NE,n,*);DF_OF_AR_FOR_DYNAMIC_MOD(/,,n.Invert(),*);TE <int NUM> TE <TY INT> IN DynamicMods<NUM> DynamicMods<NUM>::OP^(INT EX)CO{RE MO(DynamicMods<NUM>(*TH).Power(MO(EX)));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM> DynamicMods<NUM>::OP<<(INT n)CO{RE MO(DynamicMods<NUM>(*TH)<<= MO(n));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM> DynamicMods<NUM>::OP>>(INT n)CO{RE MO(DynamicMods<NUM>(*TH)>>= MO(n));}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::OP-()CO NE{RE MO(DynamicMods<NUM>(*TH).SignInvert());}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::SignInvert()NE{m_n > 0?m_n = COants::g_M - m_n:m_n;RE *TH;}TE <int NUM> IN DynamicMods<NUM>& DynamicMods<NUM>::Invert(){RE m_n <(COants::g_M_is_prime?1e6:3e4)?*TH = Inverse(m_n):NonNegativePower(COants::g_order_minus);}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::PositivePower(INT EX)NE{DynamicMods<NUM> pw{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= pw:*TH;EX >>= 1;pw *= pw;}RE *TH;}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::NonNegativePower(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePower(MO(EX));}TE <int NUM> TE <TY INT> IN DynamicMods<NUM>& DynamicMods<NUM>::Power(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE NonNegativePower(MO(neg?(EX %= COants::g_order)== 0?EX:EX += COants::g_order:EX));}TE <int NUM> IN VO DynamicMods<NUM>::swap(DynamicMods<NUM>& n)NE{std::swap(m_n,n.m_n);}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::Inverse(CRI n){if(COants::g_M == 1){RE zero();}AS(0 < n && n < int(COants::g_memory_le));ST VE<DynamicMods<NUM>> memory ={zero(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(COants::g_M_is_prime?DeRP(COants::g_M - memory[COants::g_M % le_curr].m_n * ull(COants::g_M / le_curr)% COants::g_M):DeRP(n).NonNegativePower(COants::g_order_minus));le_curr++;}RE memory[n];}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::TwoPower(CRI n){if(COants::g_M == 1){RE zero();}AS(0 <= n && n < int(COants::g_memory_le));ST VE<DynamicMods<NUM>> memory ={one()};ST int le_curr = 1;WH(le_curr <= n){memory.push_back(memory.back()+ memory.back());le_curr++;}RE memory[n];}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::Factorial(CRL n){AS(0 <= n);if(ll(COants::g_M)<= n){RE zero();}ST VE<DynamicMods<NUM>> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n && memory.back().m_n != 0){memory.push_back(memory.back()* DeRP(le_curr));le_curr++;}RE le_curr <= n?memory.back():memory[n];}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::FactorialInverse(CRL n){AS(0 <= n && n < COants::g_M);ST VE<DynamicMods<NUM>> memory ={one(),one()};ST int le_curr = 2;WH(le_curr <= n){memory.push_back(memory[le_curr - 1]* Inverse(le_curr));le_curr++;}RE memory[n];}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::Combination(CRL n,CRL i){RE 0 <= i && i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <int NUM> IN CRUI DynamicMods<NUM>::RP()CO NE{RE m_n;}TE <int NUM> IN DynamicMods<NUM> DynamicMods<NUM>::DeRP(uint n)NE{DynamicMods<NUM> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::zero()NE{ST CO DynamicMods<NUM> z{};RE z;}TE <int NUM> IN CO DynamicMods<NUM>& DynamicMods<NUM>::one()NE{ST CO DynamicMods<NUM> o{1};RE o;}TE <int NUM> IN CRUI DynamicMods<NUM>::GetModulo()NE{RE COants::g_M;}TE <int NUM> IN VO DynamicMods<NUM>::SetModulo(CRUI M,CRI order_minus)NE{COants::g_M = M;COants::g_memory_le = M < COants::g_memory_bound?M:COants::g_memory_bound;;COants::g_M_minus = M - 1;COants::g_order = order_minus == -1?M - 1:order_minus + 1;COants::g_order_minus = COants::g_order - 1;COants::g_M_is_prime = order_minus == -1;}TE <int NUM> IN DynamicMods<NUM> Inverse(CO DynamicMods<NUM>& n){RE MO(DynamicMods<NUM>(n).Invert());}TE <int NUM,TY INT> IN DynamicMods<NUM> Power(DynamicMods<NUM> n,INT EX){RE MO(n.Power(MO(EX)));}TE <int NUM> IN VO swap(DynamicMods<NUM>& n0,DynamicMods<NUM>& n1)NE{n0.swap(n1);}TE <int NUM> IN string to_string(CO DynamicMods<NUM>& n)NE{RE to_string(n.RP())+ " + " + to_string(DynamicMods<NUM>::GetModulo())+ "Z";}TE <int NUM,CL Traits> IN IS& OP>>(IS& is,DynamicMods<NUM>& n){ll m;is >> m;n = m;RE is;}TE <int NUM,CL Traits> IN OS& OP<<(OS& os,CO DynamicMods<NUM>& n){RE os << n.RP();}

TE <TY INT1,TY INT2>INT1 GCD(CO INT1& b_0,CO INT2& b_1){INT1 a_0 = b_0 < 0?-b_0:b_0;INT1 a_1 = b_1 < 0?-b_1:b_1;WH(a_1 != 0){swap(a_0 %= a_1,a_1);}RE a_0;}TE <TY INT1,TY INT2> IN INT1 LCM(CO INT1& b_0,CO INT2& b_1){RE(b_0 == 0 && b_1 == 0)?0:(b_0 / GCD(b_0,b_1))* b_1;}

#define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash<MOD>::OP()(CO MOD& n)CO{ST CO hash<decldecay_t(n.RP())> h;RE h(n.RP());}
TE <int NUM> DC_OF_HASH(DynamicMods<NUM>);
TE <int NUM> DF_OF_HASH_FOR_MOD( DynamicMods<NUM> );
#endif

#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SegmentTree/a_Body.hpp"
#else
TE <TY U>CL VirtualMeetSemilattice:VI PU VirtualMonoid<U>{PU:IN U Meet(U u0,CO U& u1);};TE <TY U>CL MinSemilattice:VI PU VirtualMeetSemilattice<U>,PU PointedSet<U>{PU:IN MinSemilattice(U infty_U);IN U Product(U u0,CO U& u1);};TE <TY U>CL MaxSemilattice:VI PU VirtualMeetSemilattice<U>,PU PointedSet<U>{PU:IN MaxSemilattice(U zero_U);IN U Product(U u0,CO U& u1);};
TE <TY U> IN U VirtualMeetSemilattice<U>::Meet(U u0,CO U& u1){RE TH->Product(MO(u0),u1);}TE <TY U> IN MinSemilattice<U>::MinSemilattice(U infty_U):PointedSet<U>(MO(infty_U)){}TE <TY U> IN MaxSemilattice<U>::MaxSemilattice(U zero_U):PointedSet<U>(MO(zero_U)){}TE <TY U> IN U MinSemilattice<U>::Product(U u0,CO U& u1){RE u0 < u1?MO(u0):u1;}TE <TY U> IN U MaxSemilattice<U>::Product(U u0,CO U& u1){RE u1 < u0?MO(u0):u1;}

TE <TY U,TY MONOID>CL AbstractSegmentTree{PU:MONOID m_M;int m_SZ;int m_pw;VE<U> m_a;IN AbstractSegmentTree(MONOID M,CRI SZ = 0);IN AbstractSegmentTree(MONOID M,CO VE<U>& a);TE <TY...Args> IN VO Initialise(CO Args&... args);VO Set(CRI i,CO U& u);IN CO U& OP[](CRI i)CO;IN CO U& Get(CRI i)CO;U IntervalProduct(CRI i_start,CRI i_final);};TE <TY MONOID,TY...Args> AbstractSegmentTree(MONOID M,CO Args&... args)-> AbstractSegmentTree<inner_t<MONOID>,MONOID>;TE <TY U>CL SegmentTree:PU AbstractSegmentTree<U,MaxSemilattice<U>>{PU:TE <TY...Args> IN SegmentTree(CO U& zero_U,CO Args&... args);IN U IntervalMax(CRI i_start,CRI i_final);};
TE <TY U,TY MONOID> IN AbstractSegmentTree<U,MONOID>::AbstractSegmentTree(MONOID M,CRI SZ):AbstractSegmentTree(M,VE<U>(SZ,M.One())){}TE <TY U,TY MONOID> IN AbstractSegmentTree<U,MONOID>::AbstractSegmentTree(MONOID M,CO VE<U>& a):m_M(MO(M)),m_SZ(a.SZ()),m_pw(1),m_a(){ST_AS(is_same_v<U,inner_t<MONOID>>);WH(m_SZ > m_pw){m_pw <<= 1;}m_a.resize(m_pw << 1,m_M.One());for(int i = 0;i < m_SZ;i++){m_a[m_pw | i]= a[i];}for(int j = m_pw - 1;j >= 1;j--){int j2 = j << 1;m_a[j]= m_M.Product(m_a[j2],m_a[j2 | 1]);}}TE <TY U> TE <TY...Args> IN SegmentTree<U>::SegmentTree(CO U& zero_U,CO Args&... args):AbstractSegmentTree<U,MaxSemilattice<U>>(MaxSemilattice<U>(zero_U),args...){}TE <TY U,TY MONOID> TE <TY...Args> IN VO AbstractSegmentTree<U,MONOID>::Initialise(CO Args&... args){*TH = AbstractSegmentTree(MO(m_M),args...);}TE <TY U,TY MONOID>VO AbstractSegmentTree<U,MONOID>::Set(CRI i,CO U& u){AS(0 <= i && i < m_SZ);int j = m_pw | i;m_a[j]= u;WH((j >>= 1)>= 1){int j2 = j << 1;m_a[j]= m_M.Product(m_a[j2],m_a[j2 | 1]);}RE;}TE <TY U,TY MONOID> IN CO U& AbstractSegmentTree<U,MONOID>::OP[](CRI i)CO{AS(0 <= i && i < m_SZ);RE m_a[m_pw | i];}TE <TY U,TY MONOID> IN CO U& AbstractSegmentTree<U,MONOID>::Get(CRI i)CO{RE OP[](i);}TE <TY U,TY MONOID>U AbstractSegmentTree<U,MONOID>::IntervalProduct(CRI i_start,CRI i_final){U AN0 = m_M.One();int j_min = max(0,i_start);int j_ulim = min(i_final,m_SZ - 1);if(j_min > j_ulim){RE AN0;}j_min |= m_pw;++(j_ulim |= m_pw);U AN1 = AN0;WH(j_min < j_ulim){(j_min & 1)== 1?AN0 = m_M.Product(MO(AN0),m_a[j_min++]):AN0;(j_ulim & 1)== 1?AN1 = m_M.Product(m_a[--j_ulim],AN1):AN1;j_min >>= 1;j_ulim >>= 1;}RE m_M.Product(MO(AN0),AN1);}TE<TY U> IN U SegmentTree<U>::IntervalMax(CRI i_start,CRI i_final){RE TH->IntervalProduct(i_start,i_final);}
#endif

#define TTMA TwoByTwoMatrix
#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/LinearAlgebra/TwoByTwo/a_Body.hpp"
#else
#define SFINAE_FOR_MA(DEFAULT)TY Arg,enable_if_t<is_COructible_v<T,Arg>>* DEFAULT
TE <TY MAT,TY T>CL TTMARow{PU:MAT& m_M;int m_y;CE TTMARow(MAT& M,CRI y)NE;CE T& OP[](CRI x);};TE <TY T>CL TTMA{PU:T m_M00;T m_M01;T m_M10;T m_M11;CE TTMA(T M00,T M01,T M10,T M11)NE;CE TTMA(CO T& scalar = T())NE;TE <SFINAE_FOR_MA(= nullptr)> CE TTMA(CO Arg& scalar)NE;CE TTMA(CO TTMA<T>& mat)NE;CE TTMA(TTMA<T>&& mat)NE;CE TTMA<T>& OP=(TTMA<T> mat)NE;CE TTMA<T>& OP+=(CO TTMA<T>& mat)NE;CE TTMA<T>& OP-=(CO TTMA<T>& mat)NE;CE TTMA<T>& OP*=(CO TTMA<T>& mat)NE;CE TTMA<T>& OP*=(CO T& scalar)NE;TE <SFINAE_FOR_MA(= nullptr)> CE TTMA<T>& OP*=(CO Arg& scalar)NE;IN TTMA<T>& OP/=(CO TTMA<T>& mat);IN TTMA<T>& OP/=(CO T& scalar);TE <SFINAE_FOR_MA(= nullptr)> IN TTMA<T>& OP/=(CO Arg& scalar);IN TTMA<T>& OP%=(CO T& scalar);IN TTMA<T>& Invert();IN TTMA<T> Inverse()CO;CE bool OP==(CO TTMA<T>& mat)CO NE;CE bool OP!=(CO TTMA<T>& mat)CO NE;CE TTMA<T> OP+(TTMA<T> mat)CO NE;CE TTMA<T> OP-()CO NE;CE TTMA<T> OP-(CO TTMA<T>& mat)CO NE;CE TTMA<T> OP*(CO TTMA<T>& mat)CO NE;TE <SFINAE_FOR_MA(= nullptr)> CE TTMA<T> OP*(CO Arg& scalar)CO NE;IN TTMA<T> OP/(CO TTMA<T>& mat)CO;TE <SFINAE_FOR_MA(= nullptr)> IN TTMA<T> OP/(CO Arg& scalar)CO;IN TTMA<T> OP%(CO T& scalar)CO;TE <TY INT> CE TTMA<T> OP^(INT EX)CO;CE T tr()CO NE;CE T det()CO NE;CE VO swap(TTMA<T>& mat)NE;CE TTMARow<CO TTMA<T>,CO T> OP[](CRI y)CO;CE TTMARow<TTMA<T>,T> OP[](CRI y);CE TTMA<T> Square()CO NE;};
TE <TY MAT,TY T> CE TTMARow<MAT,T>::TTMARow(MAT& M,CRI y)NE:m_M(M),m_y(y){}TE <TY T> CE TTMA<T>::TTMA(T M00,T M01,T M10,T M11)NE:m_M00(MO(M00)),m_M01(MO(M01)),m_M10(MO(M10)),m_M11(MO(M11)){}TE <TY T> CE TTMA<T>::TTMA(CO T& scalar)NE:m_M00(scalar),m_M01(),m_M10(),m_M11(scalar){}TE <TY T> TE <SFINAE_FOR_MA()> CE TTMA<T>::TTMA(CO Arg& scalar)NE:TTMA(T(scalar)){}TE <TY T> CE TTMA<T>::TTMA(CO TTMA<T>& mat)NE:m_M00(mat.m_M00),m_M01(mat.m_M01),m_M10(mat.m_M10),m_M11(mat.m_M11){}TE <TY T> CE TTMA<T>::TTMA(TTMA<T>&& mat)NE:m_M00(MO(mat.m_M00)),m_M01(MO(mat.m_M01)),m_M10(MO(mat.m_M10)),m_M11(MO(mat.m_M11)){}TE <TY T> CE TTMA<T>& TTMA<T>::OP=(TTMA<T> mat)NE{m_M00 = MO(mat.m_M00);m_M01 = MO(mat.m_M01);m_M10 = MO(mat.m_M10);m_M11 = MO(mat.m_M11);RE *TH;}TE <TY T> CE TTMA<T>& TTMA<T>::OP+=(CO TTMA<T>& mat)NE{m_M00 += mat.m_M00;m_M01 += mat.m_M01;m_M10 += mat.m_M10;m_M11 += mat.m_M11;RE *TH;}TE <TY T> CE TTMA<T>& TTMA<T>::OP-=(CO TTMA<T>& mat)NE{m_M00 -= mat.m_M00;m_M01 -= mat.m_M01;m_M10 -= mat.m_M10;m_M11 -= mat.m_M11;RE *TH;}TE <TY T> CE TTMA<T>& TTMA<T>::OP*=(CO TTMA<T>& mat)NE{RE *TH = *TH * mat;}TE <TY T> CE TTMA<T>& TTMA<T>::OP*=(CO T& scalar)NE{m_M00 *= scalar;m_M01 *= scalar;m_M10 *= scalar;m_M11 *= scalar;RE *TH;}TE <TY T> TE <SFINAE_FOR_MA()> CE TTMA<T>& TTMA<T>::OP*=(CO Arg& scalar)NE{RE *TH *= T(scalar);}TE <TY T> IN TTMA<T>& TTMA<T>::OP/=(CO TTMA<T>& mat){RE *TH = *TH / mat;}TE <TY T> IN TTMA<T>& TTMA<T>::OP/=(CO T& scalar){RE *TH *= T(1)/ scalar;}TE <TY T> TE <SFINAE_FOR_MA()> IN TTMA<T>& TTMA<T>::OP/=(CO Arg& scalar){RE *TH /= T(scalar);}TE <TY T> IN TTMA<T>& TTMA<T>::OP%=(CO T& scalar){m_M00 %= scalar;m_M01 %= scalar;m_M10 %= scalar;m_M11 %= scalar;RE *TH;}TE <TY T> IN TTMA<T>& TTMA<T>::Invert(){::swap(m_M00,m_M11);m_M01 = -m_M01;m_M10 = -m_M10;RE *TH /= det();}TE <TY T> TTMA<T> TTMA<T>::Inverse()CO{RE MO(TTMA<T>(*TH).invert());}TE <TY T> CE bool TTMA<T>::OP==(CO TTMA<T>& mat)CO NE{RE m_M00 == mat.m_M00 && m_M01 == mat.m_M01 && m_M10 == mat.m_M10 && m_M11 == mat.m_M11;}TE <TY T> CE bool TTMA<T>::OP!=(CO TTMA<T>& mat)CO NE{RE !(*TH == mat);}TE <TY T> CE TTMA<T> TTMA<T>::OP+(TTMA<T> mat)CO NE{RE MO(mat += *TH);}TE <TY T> CE TTMA<T> TTMA<T>::OP-()CO NE{RE TTMA<T>(-m_M00,-m_M01,-m_M10,-m_M11);}TE <TY T> CE TTMA<T> TTMA<T>::OP-(CO TTMA<T>& mat)CO NE{RE MO(-mat += *TH);}TE <TY T> CE TTMA<T> TTMA<T>::OP*(CO TTMA<T>& mat)CO NE{RE TTMA<T>(m_M00 * mat.m_M00 + m_M01 * mat.m_M10,m_M00 * mat.m_M01 + m_M01 * mat.m_M11,m_M10 * mat.m_M00 + m_M11 * mat.m_M10,m_M10 * mat.m_M01 + m_M11 * mat.m_M11);}TE <TY T> TE <SFINAE_FOR_MA()> CE TTMA<T> TTMA<T>::OP*(CO Arg& scalar)CO NE{RE MO(TTMA<T>(*TH)*= scalar);}TE <TY T> IN TTMA<T> TTMA<T>::OP/(CO TTMA<T>& mat)CO{CO T det_inv{T(1)/(mat.m_M00 * mat.m_M11 - mat.m_M01 * mat.m_M10)};RE TTMA<T>((m_M00 * mat.m_M11 - m_M01 * mat.m_M10)* det_inv,(m_M01 * mat.m_M00 - m_M00 * mat.m_M01)* det_inv,(m_M10 * mat.m_M11 - m_M11 * mat.m_M10)* det_inv,(m_M11 * mat.m_M00 - m_M10 * mat.m_M01)* det_inv);}TE <TY T> TE <SFINAE_FOR_MA()> IN TTMA<T> TTMA<T>::OP/(CO Arg& scalar)CO{RE MO(TTMA<T>(*TH)/= scalar);}TE <TY T> IN TTMA<T> TTMA<T>::OP%(CO T& scalar)CO{RE MO(TTMA<T>(*TH)%= scalar);}TE <TY T> TE <TY INT> CE TTMA<T> TTMA<T>::OP^(INT EX)CO{TTMA<T> AN{1},pw{*TH};EX < 0?(EX *= -1,pw.Invert()):pw;WH(EX > 0){(EX & 1)== 1?AN *= pw:AN;pw = pw.Square();EX >>= 1;}RE AN;}TE <TY T> CE TTMA<T> TTMA<T>::Square()CO NE{RE TTMA<T>(m_M00 * m_M00 + m_M01 * m_M10,(m_M00 + m_M11)* m_M01,m_M10 *(m_M00 + m_M11),m_M10 * m_M01 + m_M11 * m_M11);}TE <TY T> CE T TTMA<T>::tr()CO NE{RE m_M00 + m_M11;}TE <TY T> CE T TTMA<T>::det()CO NE{RE m_M00 * m_M11 - m_M01 * m_M10;}TE <TY T> CE VO TTMA<T>::swap(TTMA<T>& mat)NE{std::swap(m_M00,mat.m_M00);std::swap(m_M01,mat.m_M01);std::swap(m_M10,mat.m_M10);std::swap(m_M11,mat.m_M11);}TE <TY MAT,TY T> CE T& TTMARow<MAT,T>::OP[](CRI x){AS(0 <= x && x < 2);RE x == 0?m_y == 0?m_M.m_M00:m_M.m_M10:m_y == 0?m_M.m_M01:m_M.m_M11;}TE <TY T> CE TTMARow<CO TTMA<T>,CO T> TTMA<T>::OP[](CRI y)CO{AS(0 <= y && y < 2);RE{*TH,y};}TE <TY T> CE TTMARow<TTMA<T>,T> TTMA<T>::OP[](CRI y){AS(0 <= y && y < 2);RE{*TH,y};}TE <TY T,SFINAE_FOR_MA()> CE TTMA<T> OP*(CO Arg& scalar,CO TTMA<T>& mat)NE{RE MO(TTMA<T>(mat)*= scalar);}TE <TY T,TY INT> CE TTMA<T> Power(CO TTMA<T>& mat,INT EX)NE{RE mat ^ MO(EX);}TE <TY T> CE VO swap(TTMA<T>& mat1,TTMA<T>& mat2)NE{mat1.swap(mat2);}TE <TY T,CL Traits> IN OS& OP<<(OS& os,CO TTMA<T>& mat){RE os << mat[0][0]<< " " << mat[0][1]<< "\n" << mat[1][0]<< " " << mat[1][1];}
#endif


/* AAA 常設でないライブラリは以上に挿入する。*/

#define INCLUDE_SUB
#include __FILE__
#else /* INCLUDE_LIBRARY */
#ifdef DEBUG
  #define _GLIBCXX_DEBUG
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize ( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
  #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
  #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if CE( test_case_num_bound > 1 ){ FINISH_MAIN
  #ifdef USE_GETLINE
    #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
    #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ )
    #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ )
    #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
    #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } }
  #else
    #define SET( ... ) VariadicCin( cin , __VA_ARGS__ )
    #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ )
    #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); }
    #define CIN_A( LL , I , N , ... ) VE<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ )
    #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE<VE<LL>> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); }
    #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } }
  #endif
  #define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX )
  #define SOLVE_ONLY 
  #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
  #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ )
  #define CERR( ... ) 
  #define CERRNS( ... ) 
  #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL
  #define CERR_A( I , N , A ) 
  #define TLE( CONDITION ) if( !( CONDITION ) ){ ll TLE_VAR = 1; while( TLE_VAR != 0 ){ ( TLE_VAR += 2 ) %= int( 1e9 ); } cerr << TLE_VAR << endl; }
  #define MLE( CONDITION ) if( !( CONDITION ) ){ vector<vector<ll>> MLE_VAR{}; REPEAT( 1e6 ){ MLE_VAR.push_back( vector<ll>( 1e6 ) ); } cerr << MLE_VAR << endl; }
  #define OLE( CONDITION ) if( !( CONDITION ) ){ REPEAT( 1e8 ){ cerr << "OLE\n"; } }
#endif
#ifdef REACTIVE
  #ifdef DEBUG
    #define RSET( A , ... ) A = __VA_ARGS__
  #else
    #define RSET( A , ... ) SET( A )
  #endif
  #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ )
  #define ENDL endl
#else
  #define ENDL "\n"
#endif
#include <bits/stdc++.h>
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 )
#define CURRENT_TIME ( current_time = static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); }
#define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX )
#define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector<decldecay_t( MAX )>( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX )
#define PR1( A1 , ... ) A1
#define PR2( A1 , A2 , ... ) A2
#define PR3( A1 , A2 , A3 , ... ) A3
#define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP FINAL ; VAR INCR )
#define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) )
#define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) )
#define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) )
#define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS )
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ , false ); auto answer = Answer( __VA_ARGS__ , false ); bool match = naive == answer; CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive ==" , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ CERR( "出力の不一致が検出されました。" ); RE; }
#define CHECK( ... ) auto answer = Answer( __VA_ARGS__ , false ); CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Answer == " , answer )

/* 圧縮用 */
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual 
#define IS basic_istream<char,Traits>
#define OS basic_ostream<char,Traits>
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin

/* 型のエイリアス */
#define decldecay_t(VAR)decay_t<decltype(VAR)>
TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...));
TE <TY T> US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;

/* VVV 常設ライブラリは以下に挿入する。*/
#ifdef DEBUG
  #include "C:/Users/user/Documents/Programming/Contest/Template/Local/a_Body.hpp"
#else
/* Random (1KB)*/
ll GetRand(CRL Rand_min,CRL Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;}

/* Set (2KB)*/
#define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;};
CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};
TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>;

#define DF_OF_POP_FOR_SET(SET)TE <TY T> IN T pop_max(SET& S){AS(!S.empty());auto IT = --S.EN();T AN = *IT;S.erase(IT);RE AN;}TE <TY T> IN T pop_min(SET& S){AS(!S.empty());auto IT = S.BE();T AN = *IT;S.erase(IT);RE AN;}TE <TY T> IN SET& OP<<=(SET& S,T t){S.insert(MO(t));RE S;}TE <TY T,TY U> IN SET& OP<<=(SET& S,U&& u){S.insert(T{forward<U>(u)});RE S;}TE <TY T> IN SET& OP>>=(SET& S,CO T& t){auto IT = S.lower_bound(t);AS(IT != S.EN()&& *IT == t);S.erase(IT);RE S;}TE <TY T,TY U> IN SET& OP>>=(SET& S,CO U& u){RE S >>= T{u};}TE <TY T> IN CO T& Get(CO SET& S,int i){auto BE = S.BE(),EN = S.EN();auto& IT = i < 0?(++i,--EN):BE;WH(i > 0 && IT != EN){--i;++IT;}WH(i < 0 && IT != BE){++i;--IT;}AS(i == 0);RE *IT;}
#define DF_OF_UNION_FOR_SET(SET)TE <TY T> IN SET& OP|=(SET& S0,SET S1){S0.merge(MO(S1));RE S0;}TE <TY T> IN SET OP|(SET S0,SET S1){RE MO(S0.SZ()< S1.SZ()?S1 |= MO(S0):S0 |= MO(S1));}
TE <TY SET,TY T> IN TY SET::const_iterator MaximumLeq(CO SET& S,CO T& t){auto IT = S.upper_bound(t);RE IT == S.BE()?S.EN():--IT;}TE <TY SET,TY T> IN TY SET::const_iterator MaximumLt(CO SET& S,CO T& t){auto IT = S.lower_bound(t);RE IT == S.BE()?S.EN():--IT;}TE <TY SET,TY T> IN TY SET::const_iterator MinimumGeq(CO SET& S,CO T& t){RE S.lower_bound(t);}TE <TY SET,TY T> IN TY SET::const_iterator MinimumGt(CO SET& S,CO T& t){RE S.upper_bound(t);}TE <TY SET,TY ITERATOR> IN VO EraseBack(SET& S,ITERATOR& IT){IT = S.erase(IT);}TE <TY SET,TY ITERATOR> IN VO EraseFront(SET& S,ITERATOR& IT){IT = S.erase(IT);IT == S.BE()?IT = S.EN():--IT;}TE <TE <TY...> TY SET,TY T,TY...Args> IN bool In(CO SET<T,Args...>& S,CO T& t){RE S.count(t)== 1;}DF_OF_POP_FOR_SET(set<T>);DF_OF_POP_FOR_SET(unordered_set<T>);DF_OF_POP_FOR_SET(multiset<T>);DF_OF_POP_FOR_SET(unordered_multiset<T>);DF_OF_UNION_FOR_SET(set<T>);DF_OF_UNION_FOR_SET(unordered_set<T>);DF_OF_UNION_FOR_SET(multiset<T>);DF_OF_UNION_FOR_SET(unordered_multiset<T>);DF_OF_UNION_FOR_SET(VE<T>);DF_OF_UNION_FOR_SET(LI<T>);

/* Tuple (6KB)*/
#define DF_OF_AR_FOR_TUPLE(OPR)TE <TY T,TY U,TE <TY...> TY PAIR> IN auto OP OPR ## =(PAIR<T,U>& t0,CO PAIR<T,U>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE <TY T,TY U,TY V,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V>& t0,CO TUPLE<T,U,V>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE <TY T,TY U,TY V,TY W,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V,W>& t0,CO TUPLE<T,U,V,W>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE <TY ARG,TY T,TY U,TE <TY...> TY PAIR> IN auto OP OPR ## =(PAIR<T,U>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V,TY W,TE <TY...> TY TUPLE> IN auto OP OPR ## =(TUPLE<T,U,V,W>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;get<3>(t0)OPR ## = t1;RE t0;}TE <TE <TY...> TY TUPLE,TY...ARGS,TY ARG> IN auto OP OPR(CO TUPLE<ARGS...>& t0,CO ARG& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);}
#define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE <TY T,TY U,TE <TY...> TY PAIR> IN auto OP INCR(PAIR<T,U>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE <TY T,TY U,TY V,TE <TY...> TY TUPLE> IN auto OP INCR(TUPLE<T,U,V>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE <TY T,TY U,TY V,TY W,TE <TY...> TY TUPLE> IN auto OP INCR(TUPLE<T,U,V,W>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;}
TE <CL Traits,TY T> IN IS& OP>>(IS& is,tuple<T>& arg){RE is >> get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP>>(IS& is,V<T,U>& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN IS& OP>>(IS& is,tuple<T,U,V>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN IS& OP>>(IS& is,tuple<T,U,V,W>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE <CL Traits,TY T> IN OS& OP<<(OS& os,CO tuple<T>& arg){RE os << get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP<<(OS& os,CO V<T,U>& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN OS& OP<<(OS& os,CO tuple<T,U,V>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN OS& OP<<(OS& os,CO tuple<T,U,V,W>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);TE <TY T,TY U,TE <TY...> TY V> IN auto OP-(CO V<T,U>& t)-> decldecay_t((get<0>(t),t)){RE{-get<0>(t),-get<1>(t)};}TE <TY T,TY U,TY V> IN tuple<T,U,V> OP-(CO tuple<T,U,V>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t)};}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP-(CO tuple<T,U,V,W>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t),-get<3>(t)};}DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--);

TE <int n>CL TupleAccessIndex{};TE <TY...Types>CL Tuple:PU tuple<Types...>{PU:IN Tuple(Types&&... args);TE <TY...Args> IN Tuple(Args&&... args);TE <int n> IN auto& OP[](CO TupleAccessIndex<n>& i)NE;TE <int n> IN CO auto& OP[](CO TupleAccessIndex<n>& i)CO NE;};TE <TY...Types>CL tuple_size<Tuple<Types...>>:PU tuple_size<tuple<Types...>>{};TE <size_t n,TY...Types>CL tuple_element<n,Tuple<Types...>>:PU tuple_element<n,tuple<Types...>>{};
TE <TY T,TY U> US Pair = Tuple<T,U>;TE <TY INT> US T2 = Pair<INT,INT>;TE <TY INT> US T3 = Tuple<INT,INT,INT>;TE <TY INT> US T4 = Tuple<INT,INT,INT,INT>;
CE TupleAccessIndex<0> O{};CE TupleAccessIndex<1> I{};CE TupleAccessIndex<2> II{};CE TupleAccessIndex<3> III{};
TE <TY...Types> IN Tuple<Types...>::Tuple(Types&&... args):tuple<Types...>(MO(args)...){}TE <TY...Types> TE <TY...Args> IN Tuple<Types...>::Tuple(Args&&... args):tuple<Types...>(forward<Args>(args)...){}TE <TY...Types> TE <int n> IN auto& Tuple<Types...>::OP[](CO TupleAccessIndex<n>& i)NE{RE get<n>(*TH);}TE <TY...Types> TE <int n> IN CO auto& Tuple<Types...>::OP[](CO TupleAccessIndex<n>& i)CO NE{RE get<n>(*TH);}

#define DF_OF_HASH_FOR_TUPLE(PAIR)TE <TY T,TY U> IN size_t hash<PAIR<T,U>>::OP()(CO PAIR<T,U>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<T> h0;ST CO hash<U> h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));}
TE <TY T> DC_OF_HASH(tuple<T>);TE <TY T,TY U> DC_OF_HASH(pair<T,U>);TE <TY T,TY U> DC_OF_HASH(tuple<T,U>);TE <TY T,TY U,TY V> DC_OF_HASH(tuple<T,U,V>);TE <TY T,TY U,TY V,TY W> DC_OF_HASH(tuple<T,U,V,W>);
TE <TY T> IN size_t hash<tuple<T>>::OP()(CO tuple<T>& n)CO{ST CO hash<T> h;RE h(get<0>(n));}DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE <TY T,TY U,TY V> IN size_t hash<tuple<T,U,V>>::OP()(CO tuple<T,U,V>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<V> h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE <TY T,TY U,TY V,TY W> IN size_t hash<tuple<T,U,V,W>>::OP()(CO tuple<T,U,V,W>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<pair<V,W>> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});}

/* Vector (3KB)*/
#define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;}
DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);DF_OF_COUT_FOR_VE(multiset);IN VO VariadicResize(CRI SZ){}TE <TY Arg,TY... ARGS> IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);}

#define DF_OF_AR_FOR_VE(V,OPR)TE <TY T> IN V<T>& OP OPR ## =(V<T>& a0,CO V<T>& a1){AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN();auto IT1 = a1.BE();WH(IT0 != EN0){*(IT0++)OPR ## = *(IT1++);}RE a0;}TE <TY T> IN V<T>& OP OPR ## =(V<T>& a,CO T& t){for(auto& x:a){x OPR## = t;}RE a;}TE <TY T,TY U> IN V<T> OP OPR(V<T> a,CO U& u){RE MO(a OPR ## = u);}
#define DF_OF_INCREMENT_FOR_VE(V,INCR)TE <TY T> IN V<T>& OP INCR(V<T>& a){for(auto& i:a){INCR i;}RE a;}
#define DF_OF_SHIFT_FOR_VE(V)TE <TY T> IN V<T>& OP<<=(V<T>& a,T t){a.push_back(MO(t));RE a;}TE <TY T,TY U> IN V<T>& OP<<=(V<T>& a,U&& u){RE a <<= T{forward<U>(u)};}TE <TY T> IN T pop(V<T>& a){AS(!a.empty());T AN = MO(a.back());a.pop_back();RE AN;}
#define DF_OF_ARS_FOR_VE(V)DF_OF_AR_FOR_VE(V,+);DF_OF_AR_FOR_VE(V,-);DF_OF_AR_FOR_VE(V,*);DF_OF_AR_FOR_VE(V,/);DF_OF_AR_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--);TE <TY T> IN V<T> OP-(V<T> a){RE MO(a *= T(-1));}TE <TY T> IN V<T> OP*(CO T& t,V<T> v){RE MO(v *= t);}DF_OF_SHIFT_FOR_VE(V);
DF_OF_ARS_FOR_VE(VE);DF_OF_ARS_FOR_VE(LI);DF_OF_SHIFT_FOR_VE(basic_string);
TE <TY V> IN auto Get(V& a){RE[&](CRI i = 0)-> CO decldecay_t(a[0])&{RE a[i];};}TE <TY T> IN VE<T> id(CRI SZ){VE<T> AN(SZ);for(int i = 0;i < SZ;i++){AN[i]= i;}RE AN;}TE <TY V> IN VO Sort(V& a,CO bool& reversed = false){US T = decltype(a[0]);if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}}TE <TY V0,TY V1> IN VO Sort(V0& a,V1& b,CO bool& reversed = false){CO int SZ = a.SZ();AS(SZ == int(b.SZ()));VE<pair<decltype(a[0]),decltype(b[0])>> v(SZ);for(int i = 0;i < SZ;i++){v[i]={MO(a[i]),MO(b[i])};}Sort(v,reversed);for(int i = 0;i < SZ;i++){a[i]= MO(v[i].first);b[i]= MO(v[i].second);}}TE <TY V> IN VE<int> IndexSort(CO V& a,CO bool& reversed = false){auto index = id<int>(a.SZ());sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE reversed?a[j]< a[i]:a[i]< a[j];});RE index;}TE <TY V> IN int len(CO V& a){RE a.SZ();}TE <TY V> IN VO Reverse(V& a){CO int SZ = len(a),half = SZ / 2;for(int i = 0;i < half;i++){swap(a[i],a[SZ-1-i]);}};TE <TY V> IN V Reversed(V a){Reverse(a);RE MO(a);}

/* Map (1KB)*/
#define DF_OF_AR_FOR_MAP(MAP,OPR)TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a,CO pair<T,U>& v){a[v.first]OPR ## = v.second;RE a;}TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a0,CO MAP<T,U>& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE <TY T,TY U,TY ARG> IN MAP<T,U> OP OPR(MAP<T,U> a,CO ARG& arg){RE MO(a OPR ## = arg);}
#define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%);
TE <TY T,TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;
DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map);

/* StdStream (2KB)*/
TE <CL Traits> IN IS& VariadicCin(IS& is){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE <CL Traits> IN IS& VariadicSet(IS& is,CRI i){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE <CL Traits> IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE <CL Traits,TY Arg> IN OS& VariadicCout(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCout(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCout(os << forward<Arg1>(arg1)<< " ",forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY Arg> IN OS& VariadicCoutNonSep(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCoutNonSep(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCoutNonSep(os << forward<Arg1>(arg1),forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY ARRAY> IN OS& CoutArray(OS& os,CRI i_start,CRI i_ulim,ARRAY&& a){for(int i = i_start;i < i_ulim;i++){(i == i_start?os:(os << " "))<< a[i];}RE os;}

/* Module (6KB)*/
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT()NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet<U,F_U>& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma<U,M_U>& OP=(CO AbstractMagma<U,M_U>&)NE;IN U Product(U u0,CO U& u1);};
TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN AbstractNSet<U,F_U>& AbstractNSet<U,F_U>::operator=(CO AbstractNSet<U,F_U>&)NE{RE *TH;}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>& AbstractMagma<U,M_U>::OP=(CO AbstractMagma<U,M_U>&)NE{RE *TH;}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}

TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};
TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}

TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};
TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}

TE <TY R,TY U>CL VirtualRSet:VI PU UnderlyingSet<U>{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE <TY U,TY MAGMA>CL RegularRSet:VI PU VirtualRSet<U,U>,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE <TY MAGMA> RegularRSet(MAGMA magma)-> RegularRSet<inner_t<MAGMA>,MAGMA>;TE <TY R,TY U,TY O_U>CL AbstractRSet:VI PU VirtualRSet<R,U>{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet<R,U,O_U>& OP=(CO AbstractRSet<R,U,O_U>&)NE;IN U Action(CO R& r,U u);};TE <TY R,TY U,TY O_U,TY GROUP>CL AbstractModule:PU AbstractRSet<R,U,O_U>,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE <TY R,TY O_U,TY GROUP> AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule<R,inner_t<GROUP>,O_U,GROUP>;TE <TY R,TY U>CL Module:VI PU VirtualRSet<R,U>,PU AdditiveGroup<U>{PU:IN U Action(CO R& r,U u);};
TE <TY R,TY MAGMA> IN RegularRSet<R,MAGMA>::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v<U,O_U,R,U>);}TE <TY R,TY U,TY O_U,TY GROUP> IN AbstractModule<R,U,O_U,GROUP>::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet<R,U,O_U>(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v<U,inner_t<GROUP>>);}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>& AbstractRSet<R,U,O_U>::OP=(CO AbstractRSet<R,U,O_U>&)NE{RE *TH;}TE <TY U,TY MAGMA> IN U RegularRSet<U,MAGMA>::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE <TY R,TY U,TY O_U> IN U AbstractRSet<R,U,O_U>::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE <TY R,TY U> IN U Module<R,U>::Action(CO R& r,U u){RE MO(u *= r);}TE <TY R,TY U> IN U VirtualRSet<R,U>::PW(U u,CO R& r){RE Action(r,MO(u));}TE <TY R,TY U> IN U VirtualRSet<R,U>::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));}

/* Iteration (3KB) */
#define SPECIALSATION_OF_AR_PROGRESSION_SUM(TYPE)TE <> IN TYPE ArithmeticProgressionSum(CO TYPE& l,CO TYPE& r,CO TYPE& d){RE SpecialisedArithmeticProgressionSum(l,r,d);}
TE <TY T,TY U,TE <TY...> TY V,TY OPR> T LeftConnectiveProd(T t,CO V<U>& f,OPR opr){for(auto& u:f){t = opr(MO(t),u);}RE MO(t);}TE <TY T,TY U,TE <TY...> TY V> IN T Sum(T t,CO V<U>& f){RE LeftConnectiveProd(MO(t),f,[](T t0,CO U& u1){RE MO(t0 += u1);});}TE <TY T,TE <TY...> TY V> IN T Sum(CO V<T>& f){RE Sum(T{},f);}TE <TY T,TY U,TE <TY...> TY V> IN T Prod(T t,CO V<U>& f){RE LeftConnectiveProd(MO(t),f,[](T t0,CO U& u1){RE MO(t0 *= u1);});}TE <TY T,TE <TY...> TY V> IN T Prod(CO V<T>& f){RE Prod(T{1},f);}TE <TY T,TE <TY...> TY V> IN CO T& Max(CO V<T>& f){RE *max_element(f.BE(),f.EN());}TE <TY T,TY...Args> IN T Max(CO T& t0,CO T& t1,CO Args&... args){RE Max(VE<T>{t0,t1,args...});}TE <TY T,TE <TY...> TY V> IN CO T& Min(CO V<T>& f){RE *min_element(f.BE(),f.EN());}TE <TY T,TY...Args> IN T Min(CO T& t0,CO T& t1,CO Args&... args){RE Min(VE<T>{t0,t1,args...});}TE <TY T,TY U> IN T SetMax(T& n,CO U& m){RE n < m?n = m:n;}TE <TY T,TY U> IN T SetMin(T& n,CO U& m){RE n > m?n = m:n;}TE <TY T,TY UINT>T Power(CO T& t,CO UINT& EX,T init = 1){RE EX > 1?Power(t * t,EX >> 1,MO(EX & 1?init *= t:init)):MO(EX > 0?init *= t:(AS(EX == 0),init));}TE <TY T> IN T PowerMemorisation(CO T& t,CRI EX){AS(EX >= 0);ST Map<T,VE<T>> memory{};auto& AN = memory[t];if(AN.empty()){AN.push_back(1);}WH(int(AN.SZ())<= EX){AN.push_back(AN.back()* t);}RE AN[EX];}TE <TY INT> IN INT ArithmeticProgressionSum(CO INT& l,CO INT& r,CO INT& d = 1){RE(l + r)*(r - l + 1)/ 2;}TE <TY INT> IN INT SpecialisedArithmeticProgressionSum(CO INT& l,CO INT& r,CO INT& d){AS(l <= r);CO INT c =(r - l)/ d;RE(c & 1)== 0?(c + 1)*(l + d *(c >> 1)):((c + 1)>> 1)*((l << 1)+ d * c);}
SPECIALSATION_OF_AR_PROGRESSION_SUM(int);
SPECIALSATION_OF_AR_PROGRESSION_SUM(uint);
SPECIALSATION_OF_AR_PROGRESSION_SUM(ll);
SPECIALSATION_OF_AR_PROGRESSION_SUM(ull);
TE <TY INT> IN INT ArithmeticProgressionSum(CO INT& r){RE ArithmeticProgressionSum(INT{},r);}TE <TY T,TY UINT> IN T GeometricProgressionSum(T rate,UINT EX_max,CO T& init = 1){T rate_minus = rate - 1;RE rate_minus == 0?init * ++EX_max:(Power(MO(rate),MO(++EX_max))- 1)/ MO(rate_minus)* init;}TE <TY T,TY UINT>T GeometricProgressionLinearCombinationSum(VE<T> rate,VE<UINT> EX_max,CO VE<T>& init){CO int SZ = init.SZ();AS(int(rate.SZ())== SZ && int(EX_max.SZ())== SZ);T AN{};for(int i = 0;i < SZ;i++){AN += GeometricProgressionSum(MO(rate[i]),MO(EX_max[i]),init[i]);}RE AN;}

/* Sqrt (1KB) */
TE <TY INT>INT RoundDownSqrt(CO INT& n){ST_AS(is_same_v<INT,int> || is_same_v<INT,uint> || is_same_v<INT,ll> || is_same_v<INT,ull>);AS(n >= 0);if(n <= 1){RE n;}CE INT r_max = is_same_v<INT,int>?46341:is_same_v<INT,uint>?65536:is_same_v<INT,ll>?3037000500:4294967296;INT l = 1,r = min(r_max,n);WH(l < r - 1){CO INT m =(l + r)>> 1;(m <= n / m?l:r)= m;}RE l;}TE <TY INT>INT RoundUpSqrt(CO INT& n){ST_AS(is_same_v<INT,int> || is_same_v<INT,uint> || is_same_v<INT,ll> || is_same_v<INT,ull>);AS(n >= 0);if(n <= 2){RE n;}CE INT r_max = is_same_v<INT,int>?46341:is_same_v<INT,uint>?65536:is_same_v<INT,ll>?3037000500:4294967296;CO INT n_minus = n - 1;INT l = 1,r = min(r_max,n);WH(l + 1 < r){CO INT m =(l + r)>> 1;(m <= n_minus / m?l:r)= m;}RE r;}TE <TY INT> bool IsSquare(CO INT& n){CO INT r = RoundDownSqrt(n);RE n == r * r;}

/* Loop (1KB)*/
TE <TY INT> bool NextLoop(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]< upper_limit[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoop(CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){RE NextLoop(index.SZ(),lower_bound,upper_limit,index);}TE <TY INT> bool NextLoopEq(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]<= upper_bound[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoopEq(CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){RE NextLoopEq(index.SZ(),lower_bound,upper_bound,index);}

/* string (1KB)*/
TE <TY INT> IN char IntToChar(CO INT& i,CO char& c = 'a'){RE c + i;}TE <TY INT = int> IN INT CharToInt(CO char& i){RE i -(i < 'a'?'A':'a');}TE <TY INT>string ArrayToString(CO VE<INT>& A,CO char& c = 'a'){CO int N = A.SZ();string S(N,c);for(int i = 0;i < N;i++){S[i]= IntToChar<INT>(A[i],c);}RE S;}TE <TY INT = int>VE<INT> StringToArray(CO string& S){CO int N = S.SZ();VE<int> A(N);for(int i = 0;i < N;i++){A[i]= CharToInt<INT>(S[i]);}RE A;}TE <TY INT>string ArrayToParenthesisString(CO VE<INT>& A){CO int N = A.SZ();string S(N,'(');for(int i = 0;i < N;i++){AS(0 <= A[i]&& A[i]<= 1);S[i]= "()"[A[i]];}RE S;}TE <TY INT = int>VE<INT> ParenthesisStringToArray(CO string& S){CO int N = S.SZ();VE<int> A(N);for(int i = 0;i < N;i++){A[i]= S[i]- '(';}RE A;}
#endif
/* AAA 常設ライブラリは以上に挿入する。*/

#define INCLUDE_LIBRARY
#include __FILE__
#endif /* INCLUDE_LIBRARY */
#endif /* INCLUDE_SUB */
#endif /* INCLUDE_MAIN */
0