結果
問題 |
No.3201 Corporate Synergy
|
ユーザー |
![]() |
提出日時 | 2025-07-30 22:06:05 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 22,488 bytes |
コンパイル時間 | 4,371 ms |
コンパイル使用メモリ | 294,152 KB |
実行使用メモリ | 7,720 KB |
最終ジャッジ日時 | 2025-07-30 22:06:12 |
合計ジャッジ時間 | 5,268 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include <atcoder/maxflow> template <class VarName, class Cost> class SubmodularOptimizationViaGraphCut { public: struct Bipartite { std::vector<std::vector<std::pair<int, bool>>> to; Bipartite(int nvar) : to(nvar) {} void Same(int idx1, int idx2) { to.at(idx1).emplace_back(idx2, false); to.at(idx2).emplace_back(idx1, false); } void Diff(int idx1, int idx2) { to.at(idx1).emplace_back(idx2, true); to.at(idx2).emplace_back(idx1, true); } std::pair<bool, std::vector<bool>> Coloring() const { const int nvar = to.size(); std::vector<bool> is_flipped(nvar, false), visited(nvar, false); bool failed = false; auto rec = [&](auto &&self, int now) -> void { visited.at(now) = true; for (auto [nxt, w] : to.at(now)) { const bool next_val = is_flipped.at(now) ^ w; if (visited.at(nxt)) { if (is_flipped.at(nxt) != next_val) { failed = true; return; } } else { is_flipped.at(nxt) = next_val; self(self, nxt); } } }; for (int i = 0; i < nvar; ++i) { if (visited.at(i)) continue; rec(rec, i); if (failed) return {false, {}}; } return {true, is_flipped}; } }; // https://www.acmicpc.net/problem/21768 ? struct Submodular { static bool Check(Cost f00, Cost f01, Cost f10, Cost f11) { return f00 + f11 <= f01 + f10; } static bool Check(const std::array<Cost, 4> &f) { return Check(f[0], f[1], f[2], f[3]); } static bool Check(const std::array<Cost, 8> &f) { return Check(f[0], f[1], f[2], f[3]) and Check(f[4], f[5], f[6], f[7]) and Check(f[0], f[1], f[4], f[5]) and Check(f[2], f[3], f[6], f[7]) and Check(f[0], f[2], f[4], f[6]) and Check(f[1], f[3], f[5], f[7]); } }; template <int Size> static std::array<Cost, Size> Transpose(const std::array<Cost, Size> &f, int flip_mask) { std::array<Cost, Size> ret; for (int i = 0; i < Size; ++i) ret.at(i ^ flip_mask) = f.at(i); return ret; } template <int Size> int GetSubmodularFlips(const std::array<Cost, Size> &f) const { int ret = 0; for (int flip_mask = 0; flip_mask < (int)f.size(); ++flip_mask) { if (Submodular::Check(Transpose<Size>(f, flip_mask))) ret |= 1 << flip_mask; } return ret; } std::map<VarName, int> to_internal_idx; std::vector<VarName> to_var_name; Cost f0 = Cost{}; std::map<int, std::array<Cost, 2>> unary; std::map<std::tuple<int, int>, std::array<Cost, 4>> binary; std::map<std::tuple<int, int, int>, std::array<Cost, 8>> ternary; std::map<std::vector<std::pair<int, bool>>, Cost> satisfy_all; int RegisterOrGetIndex(const VarName &name) { if (!to_internal_idx.contains(name)) { to_internal_idx[name] = to_internal_idx.size(); to_var_name.push_back(name); } return to_internal_idx.at(name); } public: SubmodularOptimizationViaGraphCut() {} // Impose constant `cost` void Impose(Cost cost) { f0 += cost; } // Impose `cost` when `x == tf` void Impose(const VarName &x, bool tf, Cost cost) { const int idx = RegisterOrGetIndex(x); unary[idx][tf] += cost; } // Impose `cost` when `x1 == tf1 and x2 == tf2` void Impose(const VarName &x1, bool tf1, const VarName &x2, bool tf2, Cost cost) { int idx1 = RegisterOrGetIndex(x1); int idx2 = RegisterOrGetIndex(x2); assert(idx1 != idx2); if (idx1 > idx2) { std::swap(idx1, idx2); std::swap(tf1, tf2); } binary[std::make_tuple(idx1, idx2)][(tf1 << 1) | tf2] += cost; } // Impose `cost` when `x1 == tf1, x2 == tf2 and x3 == tf3` void Impose(const VarName &x1, bool tf1, const VarName &x2, bool tf2, const VarName &x3, bool tf3, Cost cost) { int idx1 = RegisterOrGetIndex(x1); int idx2 = RegisterOrGetIndex(x2); int idx3 = RegisterOrGetIndex(x3); assert(idx1 != idx2 and idx1 != idx3 and idx2 != idx3); if (idx1 > idx2) std::swap(idx1, idx2), std::swap(tf1, tf2); if (idx1 > idx3) std::swap(idx1, idx3), std::swap(tf1, tf3); if (idx2 > idx3) std::swap(idx2, idx3), std::swap(tf2, tf3); ternary[std::make_tuple(idx1, idx2, idx3)][(tf1 << 2) | (tf2 << 1) | tf3] += cost; } // IntValue [0, k) is represented by (k - 1) variables: // TTTT...T => 0 // FTTT...T => 1 // FFTT...T => 2 // ... // FFFF...F => iv.size() (= k - 1) using IntValue = std::vector<VarName>; // https://noshi91.hatenablog.com/entry/2021/06/29/044225 void IntValueCost(const IntValue &iv, std::vector<Cost> &costs, Cost inf) { assert(iv.size() + 1 == costs.size()); for (int i = 1; i < (int)iv.size(); ++i) Then(iv.at(i), false, iv.at(i - 1), false, inf); const int k = costs.size(); Impose(costs.at(k - 1)); for (int i = k - 2; i >= 0; --i) Impose(iv.at(i), true, costs.at(i) - costs.at(i + 1)); } // If `iv1 >= min1 and iv2 <= max2` satisfy, impose `cost` void ImposeLbUb(const IntValue &iv1, int min1, const IntValue &iv2, int max2, Cost cost) { // iv >= t <=> iv[t - 1] == false or t <= 0 // iv <= t <=> iv[t] == true or t >= iv.size() if ((int)iv1.size() < min1 or max2 < 0) return; if (min1 <= 0 and max2 >= (int)iv2.size()) { Impose(cost); } else if (min1 <= 0) { Impose(iv2.at(max2), true, cost); } else if (max2 >= (int)iv2.size()) { Impose(iv1.at(min1 - 1), false, cost); } else { Impose(iv1.at(min1 - 1), false, iv2.at(max2), true, cost); } } // Impose `penalty` when `(x1 == tf1) => (x2 == tf2)` is NOT satisfied void Then(const VarName &x1, bool tf1, const VarName &x2, bool tf2, Cost penalty) { Impose(x1, tf1, x2, !tf2, penalty); } // Impose `penalty` when NOT all of `x == tf` in `consts` are satisfied void RequireAll(const std::vector<std::pair<VarName, bool>> &consts, Cost penalty) { if (consts.empty()) return; std::vector<std::pair<int, bool>> internal_vars; for (const auto &[x, tf] : consts) { const int idx = RegisterOrGetIndex(x); internal_vars.emplace_back(idx, tf); } std::sort(internal_vars.begin(), internal_vars.end()); internal_vars.erase( std::unique(internal_vars.begin(), internal_vars.end()), internal_vars.end()); satisfy_all[internal_vars] += penalty; } struct Result { bool feasible = false; Cost total_cost = Cost{}; std::vector<bool> x = {}; }; Result Solve() const { dbg(unary); dbg(binary); const int nvar = to_internal_idx.size(); Bipartite bp(nvar); for (const auto &[indices, f] : binary) { auto [idx1, idx2] = indices; const int mask = GetSubmodularFlips<4>(f); if (!mask) return Result{false}; if (!(mask & ((1 << 0b00) | (1 << 0b11)))) bp.Diff(idx1, idx2); if (!(mask & ((1 << 0b01) | (1 << 0b10)))) bp.Same(idx1, idx2); } for (const auto &[indices, f] : ternary) { auto [idx1, idx2, idx3] = indices; const int m = GetSubmodularFlips<8>(f); if (!m) return Result{false}; if (!(m & ((1 << 0b000) | (1 << 0b011) | (1 << 0b100) | (1 << 0b111)))) bp.Diff(idx2, idx3); if (!(m & ((1 << 0b001) | (1 << 0b010) | (1 << 0b101) | (1 << 0b110)))) bp.Same(idx2, idx3); if (!(m & ((1 << 0b000) | (1 << 0b101) | (1 << 0b010) | (1 << 0b111)))) bp.Diff(idx1, idx3); if (!(m & ((1 << 0b001) | (1 << 0b100) | (1 << 0b011) | (1 << 0b110)))) bp.Same(idx1, idx3); if (!(m & ((1 << 0b000) | (1 << 0b110) | (1 << 0b001) | (1 << 0b111)))) bp.Diff(idx1, idx2); if (!(m & ((1 << 0b010) | (1 << 0b100) | (1 << 0b011) | (1 << 0b101)))) bp.Same(idx1, idx2); } for (const auto &[var_flags, penalty] : satisfy_all) { if (penalty < Cost{}) return Result{false}; for (auto [idx, tf] : var_flags) { auto [idx0, tf0] = var_flags.front(); if (tf == tf0) { bp.Same(idx, idx0); } else { bp.Diff(idx, idx0); } } } Cost base = f0; std::map<int, Cost> actual_unary; std::map<std::tuple<int, int>, Cost> actual_binary_ft; std::map<std::pair<std::vector<int>, bool>, Cost> actual_require_all; auto ResolveUnary = [&](int idx, const std::array<Cost, 2> &f) { const Cost f0 = f[0b0], f1 = f[0b1]; base += f0; actual_unary[idx] += f1 - f0; }; auto ResolveBinary = [&](int idx1, int idx2, const std::array<Cost, 4> &f) { const Cost A = f[0b00], B = f[0b01], C = f[0b10], D = f[0b11]; base += A; ResolveUnary(idx1, {Cost{}, C - A}); ResolveUnary(idx2, {Cost{}, D - C}); const Cost w = (B + C) - (A + D); assert(w >= Cost{}); if (w > Cost{}) actual_binary_ft[{idx1, idx2}] += w; }; auto ResolveTernary = [&](int idx1, int idx2, int idx3, const std::array<Cost, 8> &f) { const Cost A = f[0b000], B = f[0b001], C = f[0b010], D = f[0b011], E = f[0b100], F = f[0b101], G = f[0b110], H = f[0b111]; const Cost P = (A + D + F + G) - (B + C + E + H); if (P >= Cost{}) { base += A; ResolveUnary(idx1, {Cost{}, F - B}); ResolveUnary(idx2, {Cost{}, G - E}); ResolveUnary(idx3, {Cost{}, D - C}); ResolveBinary(idx2, idx3, {Cost{}, (B + C) - (A + D), Cost{}, Cost{}}); ResolveBinary(idx1, idx3, {Cost{}, Cost{}, (B + E) - (A + F), Cost{}}); ResolveBinary(idx1, idx2, {Cost{}, (C + E) - (A + G), Cost{}, Cost{}}); base -= P; if (P) { actual_require_all[{std::vector<int>{idx1, idx2, idx3}, true}] += P; } } else { base += H; ResolveUnary(idx1, {C - G, Cost{}}); ResolveUnary(idx2, {B - D, Cost{}}); ResolveUnary(idx3, {E - F, Cost{}}); ResolveBinary(idx2, idx3, {Cost{}, Cost{}, (F + G) - (E + H), Cost{}}); ResolveBinary(idx1, idx3, {Cost{}, (D + G) - (C + H), Cost{}, Cost{}}); ResolveBinary(idx1, idx2, {Cost{}, Cost{}, (D + F) - (B + H), Cost{}}); base += P; if (P) { actual_require_all[{std::vector<int>{idx1, idx2, idx3}, false}] += -P; } } }; const auto [is_bipartite, flipped] = bp.Coloring(); if (!is_bipartite) return Result{false}; dbg(flipped); for (auto [idx, f] : unary) { f = Transpose<2>(f, flipped.at(idx)); ResolveUnary(idx, f); } for (auto [indices, f] : binary) { auto [idx1, idx2] = indices; f = Transpose<4>(f, (flipped.at(idx1) << 1) | flipped.at(idx2)); ResolveBinary(idx1, idx2, f); } for (auto [indices, f] : ternary) { auto [idx1, idx2, idx3] = indices; f = Transpose<8>(f, (flipped.at(idx1) << 2) | (flipped.at(idx2) << 1) | flipped.at(idx3)); ResolveTernary(idx1, idx2, idx3, f); } for (auto &[var_flags, penalty] : satisfy_all) { assert(var_flags.size()); const auto [idx0, tf0] = var_flags.front(); std::vector<int> vars; for (const auto &[idx, tf] : var_flags) { assert((tf ^ flipped.at(idx)) == (tf0 ^ flipped.at(idx0))); vars.push_back(idx); } actual_require_all[{vars, tf0 ^ flipped.at(idx0)}] += penalty; } dbg(base); dbg(actual_unary); dbg(actual_binary_ft); dbg(actual_require_all); const int v_false = nvar + actual_require_all.size(); const int v_true = v_false + 1; atcoder::mf_graph<Cost> mf(v_true + 1); for (auto [idx, cost] : actual_unary) { if (cost > Cost{}) mf.add_edge(v_false, idx, cost); if (cost < Cost{}) { base += cost; mf.add_edge(idx, v_true, -cost); } } for (auto [indices, f] : actual_binary_ft) { assert(f >= Cost{}); auto [idx1, idx2] = indices; if (f > Cost{}) mf.add_edge(idx1, idx2, f); } int head = nvar; for (const auto &[var_flags, penalty] : actual_require_all) { auto [vars, flg] = var_flags; assert(penalty >= Cost{}); if (flg) { for (int i : vars) mf.add_edge(i, head, penalty); mf.add_edge(head++, v_true, penalty); } else { for (int i : vars) mf.add_edge(head, i, penalty); mf.add_edge(v_false, head++, penalty); } } assert(head == v_false); const Cost flow = mf.flow(v_false, v_true); const Cost total_cost = base + flow; auto min_cut = mf.min_cut(v_false); std::vector<bool> is_true(nvar, false); for (int i = 0; i < nvar; ++i) is_true.at(i) = !min_cut.at(i) ^ flipped.at(i); return {true, total_cost, is_true}; } }; int main() { int N; cin >> N; vector<lint> P(N); cin >> P; SubmodularOptimizationViaGraphCut<int, lint> so; REP(i, N) so.Impose(i, true, -P.at(i)); dbg(so.unary); constexpr lint inf = 1LL << 55; int M; cin >> M; vector<pint> UV(M); for (auto &uv : UV) { cin >> uv.first >> uv.second; --uv.first, --uv.second; // dbg(uv); so.Then(uv.second, true, uv.first, true, inf); } int K; cin >> K; vector<tuple<int, int, int>> ABS(K); for (auto &[a, b, s] : ABS) { cin >> a >> b >> s; --a, --b; dbg(make_tuple(a, b, s)); so.Impose(-s); so.Impose(a, true, b, false, s); so.Impose(a, false, b, false, s); so.Impose(a, false, b, true, s); } dbg(P); dbg(UV); dbg(ABS); const auto ret = so.Solve(); dbg(ret.feasible); dbg(ret.total_cost); dbg(ret.x); cout << -ret.total_cost << '\n'; // atcoder::mf_graph<lint> mf(N + 2); // const int gs = N, gt = N + 1; // lint base_rieki = 0; // REP(i, N) { // if (P[i] > 0) { // base_rieki += P[i]; // mf.add_edge(gs, i, P[i] * 2); // } else { // mf.add_edge(i, gt, -P[i] * 2); // } // } // constexpr lint LARGE = 1LL << 55; // for (auto [u, v] : UV) { mf.add_edge(v, u, LARGE); } // for (auto [a, b, s] : ABS) { // base_rieki += s; // mf.add_edge(a, b, s); // mf.add_edge(b, a, s); // mf.add_edge(gs, a, s); // mf.add_edge(gs, b, s); // } // const lint flow = mf.flow(gs, gt); // dbg(base_rieki); // dbg(flow); // cout << base_rieki - flow / 2 << '\n'; }