結果
問題 |
No.5022 XOR Printer
|
ユーザー |
|
提出日時 | 2025-07-31 23:56:01 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,868 ms / 2,000 ms |
コード長 | 13,977 bytes |
コンパイル時間 | 385 ms |
コンパイル使用メモリ | 82,364 KB |
実行使用メモリ | 92,692 KB |
スコア | 5,206,925,670 |
最終ジャッジ日時 | 2025-07-31 23:57:41 |
合計ジャッジ時間 | 95,987 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
純コード判定しない問題か言語 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 50 |
ソースコード
import copy import random import itertools from time import perf_counter import argparse import sys import math MAX = 10**8 class TimeKeeper: def __init__(self): self.start_time = perf_counter() def is_time_over(self, LIMIT): return (perf_counter() - self.start_time) >= LIMIT def time_now(self): return (perf_counter() - self.start_time) # # ----- TSP 用ヘルパー関数(Christofides + 2-opt) ----- # def manhattan_matrix(coords): """座標リストからマンハッタン距離行列を返す""" n = len(coords) D = [[0]*n for _ in range(n)] for i in range(n): xi, yi = coords[i] for j in range(i+1, n): xj, yj = coords[j] d = abs(xi - xj) + abs(yi - yj) D[i][j] = d D[j][i] = d return D def prim_mst(D): """ Prim 法で MST の辺リストを返す 戻り値は [(u, v), …] のタプルリスト """ n = len(D) in_mst = [False]*n key = [float('inf')]*n parent = [-1]*n key[0] = 0 edges = [] for _ in range(n): u = min((i for i in range(n) if not in_mst[i]), key=lambda i: key[i]) in_mst[u] = True if parent[u] != -1: edges.append((u, parent[u])) for v in range(n): if not in_mst[v] and D[u][v] < key[v]: key[v] = D[u][v] parent[v] = u return edges def greedy_matching(odd, D): """ 奇次数頂点の貪欲マッチング 未マッチ頂点同士の最小距離ペアを順に組む """ pairs = [] unmatched = set(odd) candidates = [(D[i][j], i, j) for i, j in itertools.combinations(odd, 2)] candidates.sort() for _, i, j in candidates: if i in unmatched and j in unmatched: pairs.append((i, j)) unmatched.remove(i) unmatched.remove(j) if not unmatched: break return pairs def build_multigraph(n, mst_edges, matching_edges): """ MST 辺とマッチング辺を合わせた多重グラフを隣接辞書で構築 g[u][v] = 辺の重複数 """ g = {i: {} for i in range(n)} def add(u, v): g[u][v] = g[u].get(v, 0) + 1 g[v][u] = g[v].get(u, 0) + 1 for u, v in mst_edges + matching_edges: add(u, v) return g def eulerian_tour(graph, start): """ ヒアホルツァーのアルゴリズムでオイラー巡回を返す graph は build_multigraph の出力形式 """ g = {u: dict(graph[u]) for u in graph} stack = [start] path = [] while stack: u = stack[-1] if g[u]: v = next(iter(g[u])) # 辺 u–v を削除 g[u][v] -= 1 if g[u][v] == 0: del g[u][v] g[v][u] -= 1 if g[v][u] == 0: del g[v][u] stack.append(v) else: path.append(stack.pop()) return path def make_hamiltonian_cycle(euler_path): """ EulerPath から重複を除いてハミルトン巡回を作成し、 始点を末尾にも付加して閉路にする """ seen = set() cycle = [] for u in euler_path: if u not in seen: seen.add(u) cycle.append(u) cycle.append(cycle[0]) return cycle def two_opt_cycle(cycle, D): """ 閉路 cycle に対して 2-opt を適用し改善 cycle は [v0, v1, …, vn=v0] """ n = len(cycle) - 1 improved = True while improved: improved = False for i in range(1, n-1): for j in range(i+1, n): a, b = cycle[i-1], cycle[i] c, d = cycle[j], cycle[j+1] if D[a][b] + D[c][d] > D[a][c] + D[b][d]: cycle[i:j+1] = reversed(cycle[i:j+1]) improved = True break if improved: break return cycle def solve_tsp(coords, start=0): """ coords: [(x0,y0), …] start: 始点インデックス 戻り値: coords上のインデックス列(始点を含む開路) """ n = len(coords) D = manhattan_matrix(coords) mst = prim_mst(D) deg = [0]*n for u, v in mst: deg[u] += 1; deg[v] += 1 odd = [i for i, d in enumerate(deg) if d % 2 == 1] matching = greedy_matching(odd, D) graph = build_multigraph(n, mst, matching) euler_path = eulerian_tour(graph, start) cycle = make_hamiltonian_cycle(euler_path) cycle = two_opt_cycle(cycle, D) # 開路にして返す return cycle[:-1] # # ----- ここまで TSP 用ヘルパー関数 ----- # def main(DEBUG): tk = TimeKeeper() if DEBUG: LIMIT = 1.0 else: LIMIT = 1.7 def cal_score(A): N = 10 score = 0 for i in range(N): for j in range(N): score += A[i][j] return score def cal_score_sim(ANS): N = 10 nowi, nowj, s = 0, 0, 0 B = [row[:] for row in A] if len(ANS) > 1000: return -1 for c in ANS: if c == "L": nowj -= 1 elif c == "R": nowj += 1 elif c == "U": nowi -= 1 elif c == "D": nowj # typo fix: should be nowj nowi += 1 elif c == "W": B[nowi][nowj] ^= s elif c == "C": s ^= B[nowi][nowj] if nowi < 0 or nowi >= N or nowj < 0 or nowj >= N: return -1 score = 0 for i in range(N): for j in range(N): score += B[i][j] return score def replay(ANS): N = 10 nowi, nowj, s = 0, 0, 0 B = [row[:] for row in A] if len(ANS) > 1000: return -1 for c in ANS: if c == "L": nowj -= 1 elif c == "R": nowj += 1 elif c == "U": nowi -= 1 elif c == "D": nowj # typo fix: should be nowj nowi += 1 elif c == "W": B[nowi][nowj] ^= s elif c == "C": s ^= B[nowi][nowj] if nowi < 0 or nowi >= N or nowj < 0 or nowj >= N: return -1 score = 0 minv = float('inf') mini = minj = 0 for i in range(N): for j in range(N): score += B[i][j] if B[i][j] < minv: minv = B[i][j] mini, minj = i, j maxi, maxj = mini, minj maxv = 0 for di in range(-3, 4): for dj in range(-3, 4): ii, jj = mini+di, minj+dj if 0 <= ii < N and 0 <= jj < N and B[ii][jj] > maxv: maxv = B[ii][jj] maxi, maxj = ii, jj remain = 0 dist1 = abs(nowi-maxi) + abs(nowj-maxj) dist2 = abs(maxi-mini) + abs(maxj-minj) while dist1 + dist2 + 3 > remain: c = ANS.pop() remain += 1 if c == "L": nowj += 1 elif c == "R": nowj -= 1 elif c == "U": nowi += 1 elif c == "D": nowj # typo fix: should be nowj nowi -= 1 elif c == "W": B[nowi][nowj] ^= s elif c == "C": s ^= B[nowi][nowj] dist1 = abs(nowi-maxi) + abs(nowj-maxj) dist2 = abs(maxi-mini) + abs(maxj-minj) if s < 2**19: res = goto(nowi, nowj, maxi, maxj) ANS.extend(res) nowi, nowj = maxi, maxj ANS.append("C") res = goto(nowi, nowj, mini, minj) ANS.extend(res) nowi, nowj = mini, minj ANS.append("C") ANS.append("W") return ANS def goto(nowi, nowj, toi, toj): res = [] di, dj = toi-nowi, toj-nowj if di > 0: res += ["D"]*di else: res += ["U"]*(-di) if dj > 0: res += ["R"]*dj else: res += ["L"]*(-dj) return res def get_order(w_pos, nowi, nowj): """ Christofides + 2-opt による巡回順序を返す """ if not w_pos: return [] coords = [(nowi, nowj)] + list(w_pos) path = solve_tsp(coords, start=0) ordered = [coords[i] for i in path[1:]] return ordered def get_order2(w_pos): # zigzag idx = {} cnt = 0 for i in range(10): if i % 2 == 0: for j in range(10): idx[(i,j)] = cnt; cnt += 1 else: for j in reversed(range(10)): idx[(i,j)] = cnt; cnt += 1 return sorted(w_pos, key=lambda x: idx[x]) def solve(tk, LIMIT): N = 10 X = [row[:] for row in A] nowi, nowj, s = 0, 0, 0 actions = [] for k in range(10): # k:keta if tk.is_time_over(LIMIT): break if len(actions) > 1000: break bestv = 0 minturn = 10000 nowi0, nowj0 = nowi, nowj s0 = s # max_loop = 100 max_loop = 10 for loop in range(max_loop): X1 = copy.deepcopy(X) actions1 = [] nowi, nowj = nowi0, nowj0 s = s0 # sを設定する(色々試して xnow = s >> 20-1-k & 1 kouho = [] for i in range(N): for j in range(N): # if (X[i][j] >> (20-1-k)) & 1 == 1: if (X1[i][j] >> 20-1-k+1 == (1 << k) - 1) and (X1[i][j] >> 20-1-k & 1 == 1-xnow): ti, tj = i, j d = abs(nowi-i) + abs(nowj-j) kouho.append((d, ti, tj)) kouho.sort() if len(kouho)==0: print(f"not found kouho {k=} -> break", file=sys.stderr) break # d, ti, tj = kouho[0] d, ti, tj = kouho[random.randrange(len(kouho))] # 目的地へ向かう res = goto(nowi, nowj, ti, tj) actions1.extend(res) nowi = ti nowj = tj # Copyして完成 actions1.append("C") s ^= X1[nowi][nowj] # 書き込みする地点列挙 w_pos = [] for i in range(N): for j in range(N): if X1[i][j] ^ s > X1[i][j]: # if (X[i][j] >> (20-1-k)) & 1 == 0: # if (X[i][j] >> 20-1-k+1 == (1 << k) - 1) and (X[i][j] >> 20-1-k & 1 == 0): w_pos.append((i, j)) if len(w_pos) == 0: print(f"not found w_pos {k=} -> break", file=sys.stderr) break # 最大値の地点は使用せずに残す mxv = 0 for (toi, toj) in w_pos: v = X1[toi][toj] if v > mxv: mxv = v mxi, mxj = toi, toj w_pos.remove((mxi, mxj)) # 巡回する順番決め w_pos_ordered = get_order(w_pos, nowi, nowj) # w_pos_ordered = get_order2(w_pos) # 一つ残して巡回 for (toi, toj) in w_pos_ordered: res = goto(nowi, nowj, toi, toj) actions1.extend(res) nowi = toi nowj = toj # Print actions1.append("W") X1[nowi][nowj] ^= s # 最後の一つはsに書き込む toi, toj = mxi, mxj res = goto(nowi, nowj, toi, toj) actions1.extend(res) nowi = toi nowj = toj # Copy actions1.append("C") s ^= X1[nowi][nowj] # 暫定スコア v = 0 for i in range(N): for j in range(N): v += X1[i][j] turn = len(actions1) # if turn < minturn: if v > bestv: print(f" best: {v=} {turn=} loop: {loop}", file=sys.stderr) bestv = v minturn = turn best_actions = actions1[:] best_X = copy.deepcopy(X1) best_s = s best_nowi, best_nowj = nowi, nowj # 更新 X = [row[:] for row in best_X] actions.extend(best_actions) s, nowi, nowj = best_s, best_nowi, best_nowj return actions # 入力読み込み N, T = map(int, input().split()) A = [list(map(int, input().split())) for _ in range(N)] best_sc = -1 best_ans = [] LOOP = 0 while not tk.is_time_over(LIMIT): LOOP += 1 ANS = solve(tk, LIMIT) sc0 = cal_score_sim(ANS[:T]) ANS = replay(ANS[:T]) sc1 = cal_score_sim(ANS) if sc1 > best_sc: print(f" BEST: {sc1}", file=sys.stderr) best_sc = sc1 best_ans = ANS[:] print(f"SC: {best_sc}", file=sys.stderr) print(*best_ans, sep='\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Debug mode') parser.add_argument('--debug', action='store_true', help='Enable debug mode') args = parser.parse_args() main(args.debug)