結果
| 問題 | No.5022 XOR Printer |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-07-31 23:56:01 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,868 ms / 2,000 ms |
| コード長 | 13,977 bytes |
| コンパイル時間 | 385 ms |
| コンパイル使用メモリ | 82,364 KB |
| 実行使用メモリ | 92,692 KB |
| スコア | 5,206,925,670 |
| 最終ジャッジ日時 | 2025-07-31 23:57:41 |
| 合計ジャッジ時間 | 95,987 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
| 純コード判定しない問題か言語 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 50 |
ソースコード
import copy
import random
import itertools
from time import perf_counter
import argparse
import sys
import math
MAX = 10**8
class TimeKeeper:
def __init__(self):
self.start_time = perf_counter()
def is_time_over(self, LIMIT):
return (perf_counter() - self.start_time) >= LIMIT
def time_now(self):
return (perf_counter() - self.start_time)
#
# ----- TSP 用ヘルパー関数(Christofides + 2-opt) -----
#
def manhattan_matrix(coords):
"""座標リストからマンハッタン距離行列を返す"""
n = len(coords)
D = [[0]*n for _ in range(n)]
for i in range(n):
xi, yi = coords[i]
for j in range(i+1, n):
xj, yj = coords[j]
d = abs(xi - xj) + abs(yi - yj)
D[i][j] = d
D[j][i] = d
return D
def prim_mst(D):
"""
Prim 法で MST の辺リストを返す
戻り値は [(u, v), …] のタプルリスト
"""
n = len(D)
in_mst = [False]*n
key = [float('inf')]*n
parent = [-1]*n
key[0] = 0
edges = []
for _ in range(n):
u = min((i for i in range(n) if not in_mst[i]), key=lambda i: key[i])
in_mst[u] = True
if parent[u] != -1:
edges.append((u, parent[u]))
for v in range(n):
if not in_mst[v] and D[u][v] < key[v]:
key[v] = D[u][v]
parent[v] = u
return edges
def greedy_matching(odd, D):
"""
奇次数頂点の貪欲マッチング
未マッチ頂点同士の最小距離ペアを順に組む
"""
pairs = []
unmatched = set(odd)
candidates = [(D[i][j], i, j) for i, j in itertools.combinations(odd, 2)]
candidates.sort()
for _, i, j in candidates:
if i in unmatched and j in unmatched:
pairs.append((i, j))
unmatched.remove(i)
unmatched.remove(j)
if not unmatched:
break
return pairs
def build_multigraph(n, mst_edges, matching_edges):
"""
MST 辺とマッチング辺を合わせた多重グラフを隣接辞書で構築
g[u][v] = 辺の重複数
"""
g = {i: {} for i in range(n)}
def add(u, v):
g[u][v] = g[u].get(v, 0) + 1
g[v][u] = g[v].get(u, 0) + 1
for u, v in mst_edges + matching_edges:
add(u, v)
return g
def eulerian_tour(graph, start):
"""
ヒアホルツァーのアルゴリズムでオイラー巡回を返す
graph は build_multigraph の出力形式
"""
g = {u: dict(graph[u]) for u in graph}
stack = [start]
path = []
while stack:
u = stack[-1]
if g[u]:
v = next(iter(g[u]))
# 辺 u–v を削除
g[u][v] -= 1
if g[u][v] == 0: del g[u][v]
g[v][u] -= 1
if g[v][u] == 0: del g[v][u]
stack.append(v)
else:
path.append(stack.pop())
return path
def make_hamiltonian_cycle(euler_path):
"""
EulerPath から重複を除いてハミルトン巡回を作成し、
始点を末尾にも付加して閉路にする
"""
seen = set()
cycle = []
for u in euler_path:
if u not in seen:
seen.add(u)
cycle.append(u)
cycle.append(cycle[0])
return cycle
def two_opt_cycle(cycle, D):
"""
閉路 cycle に対して 2-opt を適用し改善
cycle は [v0, v1, …, vn=v0]
"""
n = len(cycle) - 1
improved = True
while improved:
improved = False
for i in range(1, n-1):
for j in range(i+1, n):
a, b = cycle[i-1], cycle[i]
c, d = cycle[j], cycle[j+1]
if D[a][b] + D[c][d] > D[a][c] + D[b][d]:
cycle[i:j+1] = reversed(cycle[i:j+1])
improved = True
break
if improved:
break
return cycle
def solve_tsp(coords, start=0):
"""
coords: [(x0,y0), …]
start: 始点インデックス
戻り値: coords上のインデックス列(始点を含む開路)
"""
n = len(coords)
D = manhattan_matrix(coords)
mst = prim_mst(D)
deg = [0]*n
for u, v in mst:
deg[u] += 1; deg[v] += 1
odd = [i for i, d in enumerate(deg) if d % 2 == 1]
matching = greedy_matching(odd, D)
graph = build_multigraph(n, mst, matching)
euler_path = eulerian_tour(graph, start)
cycle = make_hamiltonian_cycle(euler_path)
cycle = two_opt_cycle(cycle, D)
# 開路にして返す
return cycle[:-1]
#
# ----- ここまで TSP 用ヘルパー関数 -----
#
def main(DEBUG):
tk = TimeKeeper()
if DEBUG:
LIMIT = 1.0
else:
LIMIT = 1.7
def cal_score(A):
N = 10
score = 0
for i in range(N):
for j in range(N):
score += A[i][j]
return score
def cal_score_sim(ANS):
N = 10
nowi, nowj, s = 0, 0, 0
B = [row[:] for row in A]
if len(ANS) > 1000:
return -1
for c in ANS:
if c == "L":
nowj -= 1
elif c == "R":
nowj += 1
elif c == "U":
nowi -= 1
elif c == "D":
nowj # typo fix: should be nowj
nowi += 1
elif c == "W":
B[nowi][nowj] ^= s
elif c == "C":
s ^= B[nowi][nowj]
if nowi < 0 or nowi >= N or nowj < 0 or nowj >= N:
return -1
score = 0
for i in range(N):
for j in range(N):
score += B[i][j]
return score
def replay(ANS):
N = 10
nowi, nowj, s = 0, 0, 0
B = [row[:] for row in A]
if len(ANS) > 1000:
return -1
for c in ANS:
if c == "L":
nowj -= 1
elif c == "R":
nowj += 1
elif c == "U":
nowi -= 1
elif c == "D":
nowj # typo fix: should be nowj
nowi += 1
elif c == "W":
B[nowi][nowj] ^= s
elif c == "C":
s ^= B[nowi][nowj]
if nowi < 0 or nowi >= N or nowj < 0 or nowj >= N:
return -1
score = 0
minv = float('inf')
mini = minj = 0
for i in range(N):
for j in range(N):
score += B[i][j]
if B[i][j] < minv:
minv = B[i][j]
mini, minj = i, j
maxi, maxj = mini, minj
maxv = 0
for di in range(-3, 4):
for dj in range(-3, 4):
ii, jj = mini+di, minj+dj
if 0 <= ii < N and 0 <= jj < N and B[ii][jj] > maxv:
maxv = B[ii][jj]
maxi, maxj = ii, jj
remain = 0
dist1 = abs(nowi-maxi) + abs(nowj-maxj)
dist2 = abs(maxi-mini) + abs(maxj-minj)
while dist1 + dist2 + 3 > remain:
c = ANS.pop()
remain += 1
if c == "L":
nowj += 1
elif c == "R":
nowj -= 1
elif c == "U":
nowi += 1
elif c == "D":
nowj # typo fix: should be nowj
nowi -= 1
elif c == "W":
B[nowi][nowj] ^= s
elif c == "C":
s ^= B[nowi][nowj]
dist1 = abs(nowi-maxi) + abs(nowj-maxj)
dist2 = abs(maxi-mini) + abs(maxj-minj)
if s < 2**19:
res = goto(nowi, nowj, maxi, maxj)
ANS.extend(res)
nowi, nowj = maxi, maxj
ANS.append("C")
res = goto(nowi, nowj, mini, minj)
ANS.extend(res)
nowi, nowj = mini, minj
ANS.append("C")
ANS.append("W")
return ANS
def goto(nowi, nowj, toi, toj):
res = []
di, dj = toi-nowi, toj-nowj
if di > 0:
res += ["D"]*di
else:
res += ["U"]*(-di)
if dj > 0:
res += ["R"]*dj
else:
res += ["L"]*(-dj)
return res
def get_order(w_pos, nowi, nowj):
"""
Christofides + 2-opt による巡回順序を返す
"""
if not w_pos:
return []
coords = [(nowi, nowj)] + list(w_pos)
path = solve_tsp(coords, start=0)
ordered = [coords[i] for i in path[1:]]
return ordered
def get_order2(w_pos):
# zigzag
idx = {}
cnt = 0
for i in range(10):
if i % 2 == 0:
for j in range(10):
idx[(i,j)] = cnt; cnt += 1
else:
for j in reversed(range(10)):
idx[(i,j)] = cnt; cnt += 1
return sorted(w_pos, key=lambda x: idx[x])
def solve(tk, LIMIT):
N = 10
X = [row[:] for row in A]
nowi, nowj, s = 0, 0, 0
actions = []
for k in range(10): # k:keta
if tk.is_time_over(LIMIT):
break
if len(actions) > 1000:
break
bestv = 0
minturn = 10000
nowi0, nowj0 = nowi, nowj
s0 = s
# max_loop = 100
max_loop = 10
for loop in range(max_loop):
X1 = copy.deepcopy(X)
actions1 = []
nowi, nowj = nowi0, nowj0
s = s0
# sを設定する(色々試して
xnow = s >> 20-1-k & 1
kouho = []
for i in range(N):
for j in range(N):
# if (X[i][j] >> (20-1-k)) & 1 == 1:
if (X1[i][j] >> 20-1-k+1 == (1 << k) - 1) and (X1[i][j] >> 20-1-k & 1 == 1-xnow):
ti, tj = i, j
d = abs(nowi-i) + abs(nowj-j)
kouho.append((d, ti, tj))
kouho.sort()
if len(kouho)==0:
print(f"not found kouho {k=} -> break", file=sys.stderr)
break
# d, ti, tj = kouho[0]
d, ti, tj = kouho[random.randrange(len(kouho))]
# 目的地へ向かう
res = goto(nowi, nowj, ti, tj)
actions1.extend(res)
nowi = ti
nowj = tj
# Copyして完成
actions1.append("C")
s ^= X1[nowi][nowj]
# 書き込みする地点列挙
w_pos = []
for i in range(N):
for j in range(N):
if X1[i][j] ^ s > X1[i][j]:
# if (X[i][j] >> (20-1-k)) & 1 == 0:
# if (X[i][j] >> 20-1-k+1 == (1 << k) - 1) and (X[i][j] >> 20-1-k & 1 == 0):
w_pos.append((i, j))
if len(w_pos) == 0:
print(f"not found w_pos {k=} -> break", file=sys.stderr)
break
# 最大値の地点は使用せずに残す
mxv = 0
for (toi, toj) in w_pos:
v = X1[toi][toj]
if v > mxv:
mxv = v
mxi, mxj = toi, toj
w_pos.remove((mxi, mxj))
# 巡回する順番決め
w_pos_ordered = get_order(w_pos, nowi, nowj)
# w_pos_ordered = get_order2(w_pos)
# 一つ残して巡回
for (toi, toj) in w_pos_ordered:
res = goto(nowi, nowj, toi, toj)
actions1.extend(res)
nowi = toi
nowj = toj
# Print
actions1.append("W")
X1[nowi][nowj] ^= s
# 最後の一つはsに書き込む
toi, toj = mxi, mxj
res = goto(nowi, nowj, toi, toj)
actions1.extend(res)
nowi = toi
nowj = toj
# Copy
actions1.append("C")
s ^= X1[nowi][nowj]
# 暫定スコア
v = 0
for i in range(N):
for j in range(N):
v += X1[i][j]
turn = len(actions1)
# if turn < minturn:
if v > bestv:
print(f" best: {v=} {turn=} loop: {loop}", file=sys.stderr)
bestv = v
minturn = turn
best_actions = actions1[:]
best_X = copy.deepcopy(X1)
best_s = s
best_nowi, best_nowj = nowi, nowj # 更新
X = [row[:] for row in best_X]
actions.extend(best_actions)
s, nowi, nowj = best_s, best_nowi, best_nowj
return actions
# 入力読み込み
N, T = map(int, input().split())
A = [list(map(int, input().split())) for _ in range(N)]
best_sc = -1
best_ans = []
LOOP = 0
while not tk.is_time_over(LIMIT):
LOOP += 1
ANS = solve(tk, LIMIT)
sc0 = cal_score_sim(ANS[:T])
ANS = replay(ANS[:T])
sc1 = cal_score_sim(ANS)
if sc1 > best_sc:
print(f" BEST: {sc1}", file=sys.stderr)
best_sc = sc1
best_ans = ANS[:]
print(f"SC: {best_sc}", file=sys.stderr)
print(*best_ans, sep='\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Debug mode')
parser.add_argument('--debug', action='store_true', help='Enable debug mode')
args = parser.parse_args()
main(args.debug)