結果
問題 |
No.470 Inverse S+T Problem
|
ユーザー |
👑 ![]() |
提出日時 | 2025-08-02 02:47:19 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 74 ms / 2,000 ms |
コード長 | 4,472 bytes |
コンパイル時間 | 336 ms |
コンパイル使用メモリ | 82,648 KB |
実行使用メモリ | 73,832 KB |
最終ジャッジ日時 | 2025-08-02 02:47:24 |
合計ジャッジ時間 | 3,609 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 27 |
ソースコード
""" 2satかな """ import sys import typing class CSR: def __init__( self, n: int, edges: typing.List[typing.Tuple[int, int]]) -> None: self.start = [0] * (n + 1) self.elist = [0] * len(edges) for e in edges: self.start[e[0] + 1] += 1 for i in range(1, n + 1): self.start[i] += self.start[i - 1] counter = self.start.copy() for e in edges: self.elist[counter[e[0]]] = e[1] counter[e[0]] += 1 class SCCGraph: ''' Reference: R. Tarjan, Depth-First Search and Linear Graph Algorithms ''' def __init__(self, n: int) -> None: self._n = n self._edges: typing.List[typing.Tuple[int, int]] = [] def num_vertices(self) -> int: return self._n def add_edge(self, from_vertex: int, to_vertex: int) -> None: self._edges.append((from_vertex, to_vertex)) def scc_ids(self) -> typing.Tuple[int, typing.List[int]]: g = CSR(self._n, self._edges) now_ord = 0 group_num = 0 visited = [] low = [0] * self._n order = [-1] * self._n ids = [0] * self._n sys.setrecursionlimit(max(self._n + 1000, sys.getrecursionlimit())) def dfs(v: int) -> None: nonlocal now_ord nonlocal group_num nonlocal visited nonlocal low nonlocal order nonlocal ids low[v] = now_ord order[v] = now_ord now_ord += 1 visited.append(v) for i in range(g.start[v], g.start[v + 1]): to = g.elist[i] if order[to] == -1: dfs(to) low[v] = min(low[v], low[to]) else: low[v] = min(low[v], order[to]) if low[v] == order[v]: while True: u = visited[-1] visited.pop() order[u] = self._n ids[u] = group_num if u == v: break group_num += 1 for i in range(self._n): if order[i] == -1: dfs(i) for i in range(self._n): ids[i] = group_num - 1 - ids[i] return group_num, ids def scc(self) -> typing.List[typing.List[int]]: ids = self.scc_ids() group_num = ids[0] counts = [0] * group_num for x in ids[1]: counts[x] += 1 groups: typing.List[typing.List[int]] = [[] for _ in range(group_num)] for i in range(self._n): groups[ids[1][i]].append(i) return groups class TwoSAT: ''' 2-SAT Reference: B. Aspvall, M. Plass, and R. Tarjan, A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas ''' def __init__(self, n: int = 0) -> None: self._n = n self._answer = [False] * n self._scc = SCCGraph(2 * n) def add_clause(self, i: int, f: bool, j: int, g: bool) -> None: assert 0 <= i < self._n assert 0 <= j < self._n self._scc.add_edge(2 * i + (0 if f else 1), 2 * j + (1 if g else 0)) self._scc.add_edge(2 * j + (0 if g else 1), 2 * i + (1 if f else 0)) def satisfiable(self) -> bool: scc_id = self._scc.scc_ids()[1] for i in range(self._n): if scc_id[2 * i] == scc_id[2 * i + 1]: return False self._answer[i] = scc_id[2 * i] < scc_id[2 * i + 1] return True def answer(self) -> typing.List[bool]: return self._answer N = int(input()) if N > 26*2: print ("Impossible") sys.exit() ts = TwoSAT(N) U = [ input() for i in range(N) ] for i in range(N): for j in range(i+1,N): a = U[i] b = U[j] #0 vs 0 if a[0] == b[0] or a[1:] == b[1:]: ts.add_clause(i,1,j,1) #0vs1 if a[0] == b[2] or a[1:] == b[:2]: ts.add_clause(i,1,j,0) #1vs0 if a[2] == b[0] or a[:2] == b[1:]: ts.add_clause(i,0,j,1) #1vs1 if a[2] == b[2] or a[:2] == b[:2]: ts.add_clause(i,0,j,0) if not ts.satisfiable(): print ("Impossible") else: ans = ts.answer() for i,s in enumerate(U): if ans[i]: print (s[:2],s[2]) else: print (s[0],s[1:])