結果
問題 |
No.3208 Parse AND OR Affection
|
ユーザー |
![]() |
提出日時 | 2025-08-02 14:59:33 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 546 ms / 5,000 ms |
コード長 | 12,712 bytes |
コンパイル時間 | 15,977 ms |
コンパイル使用メモリ | 396,932 KB |
実行使用メモリ | 206,084 KB |
最終ジャッジ日時 | 2025-08-02 14:59:58 |
合計ジャッジ時間 | 22,745 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 20 |
ソースコード
use std::io::Write; fn run() { input! { n: usize, q: usize, x: bytes, ask: [(usize1, usize); q], } let mut seg = SegmentTreePURQ::new(n, Value::e(), |a, b| a.merge(b)); for (i, c) in x.iter().enumerate() { if i % 2 == 0 { seg.update_tmp(i, Value::val(*c)); } else { seg.update_tmp(i, Value::op(*c)); } } seg.update_all(); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); for (l, r) in ask { writeln!(out, "{}", seg.find(l, r).s[0][0]).ok(); } } const N: usize = 6; // 0: F // 1: T // 2: FF // 3: TF // 4: FT // 5: TT #[derive(Clone)] struct Value { prod: Matrix<u64, N, N>, l: Matrix<u64, 1, N>, r: Matrix<u64, N, 1>, s: Matrix<u64, 1, 1>, } impl Value { fn e() -> Self { Value { prod: one(), l: zero(), r: zero(), s: zero(), } } fn merge(&self, rhs: &Self) -> Self { Self { prod: self.prod * rhs.prod, l: rhs.l + self.l * rhs.prod, r: self.r + self.prod * rhs.r, s: self.s + rhs.s + self.l * rhs.r, } } fn val(c: u8) -> Self { let mut res = Self::e(); res.prod = zero(); let c = if c == b'F' {0} else {1}; for i in 0..4 { res.prod[i + 2][i >> c & 1] = 1; if i >> c & 1 == 1 { res.r[i + 2][0] = 1; } } res.l[0][c] = 1; if c == 1 { res.s[0][0] = 1; } res } fn op(c: u8) -> Self { let mut res = Self::e(); res.prod = zero(); if c == b'+' { res.prod[0][2 + 0b10] = 1; res.prod[1][2 + 0b11] = 1; } else if c == b'*' { res.prod[0][2 + 0b00] = 1; res.prod[1][2 + 0b10] = 1; } else { res.prod[0][2 + 0b10] = 1; res.prod[1][2 + 0b01] = 1; } res } } fn main() { run(); } // ---------- begin input macro ---------- // reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } #[macro_export] macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, bytes) => { read_value!($iter, String).bytes().collect::<Vec<u8>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } // ---------- end input macro ---------- // ---------- begin segment tree Point Update Range Query ---------- pub struct SegmentTreePURQ<T, F> { n: usize, size: usize, data: Vec<T>, e: T, op: F, } impl<T, F> SegmentTreePURQ<T, F> where T: Clone, F: Fn(&T, &T) -> T, { pub fn new(n: usize, e: T, op: F) -> Self { assert!(n > 0); let size = n.next_power_of_two(); let data = vec![e.clone(); 2 * size]; SegmentTreePURQ { n, size, data, e, op, } } pub fn update_tmp(&mut self, x: usize, v: T) { assert!(x < self.n); self.data[x + self.size] = v; } pub fn update_all(&mut self) { for i in (1..self.size).rev() { self.data[i] = (self.op)(&self.data[2 * i], &self.data[2 * i + 1]); } } pub fn update(&mut self, x: usize, v: T) { assert!(x < self.n); let mut x = x + self.size; self.data[x] = v; x >>= 1; while x > 0 { self.data[x] = (self.op)(&self.data[2 * x], &self.data[2 * x + 1]); x >>= 1; } } pub fn find(&self, l: usize, r: usize) -> T { assert!(l <= r && r <= self.n); if l == r { return self.e.clone(); } let mut l = self.size + l; let mut r = self.size + r; let mut x = self.e.clone(); let mut y = self.e.clone(); while l < r { if l & 1 == 1 { x = (self.op)(&x, &self.data[l]); l += 1; } if r & 1 == 1 { r -= 1; y = (self.op)(&self.data[r], &y); } l >>= 1; r >>= 1; } (self.op)(&x, &y) } pub fn max_right<P>(&self, l: usize, f: P) -> usize where P: Fn(&T) -> bool, { assert!(l <= self.n); assert!(f(&self.e)); if l == self.n { return self.n; } let mut l = l + self.size; let mut sum = self.e.clone(); while { l >>= l.trailing_zeros(); let v = (self.op)(&sum, &self.data[l]); if !f(&v) { while l < self.size { l <<= 1; let v = (self.op)(&sum, &self.data[l]); if f(&v) { sum = v; l += 1; } } return l - self.size; } sum = v; l += 1; l.count_ones() > 1 } {} self.n } pub fn min_left<P>(&self, r: usize, f: P) -> usize where P: Fn(&T) -> bool, { assert!(r <= self.n); assert!(f(&self.e)); if r == 0 { return 0; } let mut r = r + self.size; let mut sum = self.e.clone(); while { r -= 1; while r > 1 && r & 1 == 1 { r >>= 1; } let v = (self.op)(&self.data[r], &sum); if !f(&v) { while r < self.size { r = 2 * r + 1; let v = (self.op)(&self.data[r], &sum); if f(&v) { sum = v; r -= 1; } } return r + 1 - self.size; } sum = v; (r & (!r + 1)) != r } {} 0 } } // ---------- end segment tree Point Update Range Query ---------- // ---------- begin trait ---------- use std::ops::*; pub trait Zero: Sized + Add<Self, Output = Self> { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One: Sized + Mul<Self, Output = Self> { fn one() -> Self; fn is_one(&self) -> bool; } pub trait Group: Zero + Sub<Output = Self> + Neg<Output = Self> {} pub trait SemiRing: Zero + One {} pub trait Ring: SemiRing + Group {} pub trait Field: Ring + Div<Output = Self> {} impl<T> Group for T where T: Zero + Sub<Output = Self> + Neg<Output = Self> {} impl<T> SemiRing for T where T: Zero + One {} impl<T> Ring for T where T: SemiRing + Group {} impl<T> Field for T where T: Ring + Div<Output = Self> {} pub fn zero<T: Zero>() -> T { T::zero() } pub fn one<T: One>() -> T { T::one() } pub fn pow<T: One + Clone>(mut r: T, mut n: usize) -> T { let mut t = one(); while n > 0 { if n & 1 == 1 { t = t * r.clone(); } r = r.clone() * r; n >>= 1; } t } pub fn pow_sum<T: SemiRing + Clone>(r: T, n: usize) -> T { if n == 0 { T::zero() } else if n & 1 == 1 { T::one() + r.clone() * pow_sum(r, n - 1) } else { let a = T::one() + r.clone(); let b = r.clone() * r; a * pow_sum(b, n / 2) } } // ---------- end trait ---------- impl Zero for u64 { fn zero() -> Self { 0 } fn is_zero(&self) -> bool { *self == 0 } } impl One for u64 { fn one() -> Self { 1 } fn is_one(&self) -> bool { *self == 1 } } // ---------- begin const matrix ---------- #[derive(Clone, Copy, Debug)] pub struct Matrix<T, const R: usize, const C: usize>([[T; C]; R]); impl<T, const R: usize, const C: usize> Matrix<T, R, C> { pub fn new(a: [[T; C]; R]) -> Self { Self(a) } pub fn swap_row(&mut self, x: usize, y: usize) { assert!(x < R && y < R); self.0.swap(x, y); } pub fn swap_col(&mut self, x: usize, y: usize) { assert!(x < C && y < C); for mat in self.iter_mut() { mat.swap(x, y); } } } impl<T, const R: usize, const C: usize> Matrix<T, R, C> where T: Mul<Output = T> + Copy, { pub fn scalar(&self, k: T) -> Self { let mut res = *self; for a in res.iter_mut().flatten() { *a = *a * k; } res } } impl<T, const R: usize, const C: usize> Zero for Matrix<T, R, C> where T: Zero + Copy, { fn zero() -> Self { Self::new([[T::zero(); C]; R]) } fn is_zero(&self) -> bool { self.iter().flatten().all(|a| a.is_zero()) } } impl<T, const N: usize> One for Matrix<T, N, N> where T: Zero + One + Copy, { fn one() -> Self { let mut res = Self::zero(); for (i, a) in res.iter_mut().enumerate() { a[i] = T::one(); } res } fn is_one(&self) -> bool { self.iter().enumerate().all(|(i, a)| { a.iter() .enumerate() .all(|(j, a)| (i == j && a.is_one()) || (i != j && a.is_zero())) }) } } impl<T, const R: usize, const C: usize> AddAssign for Matrix<T, R, C> where T: Add<Output = T> + Copy, { fn add_assign(&mut self, rhs: Self) { for (a, b) in self.iter_mut().zip(rhs.iter()) { for (a, b) in a.iter_mut().zip(b.iter()) { *a = *a + *b; } } } } impl<T, const R: usize, const C: usize> SubAssign for Matrix<T, R, C> where T: Sub<Output = T> + Copy, { fn sub_assign(&mut self, rhs: Self) { for (a, b) in self.iter_mut().zip(rhs.iter()) { for (a, b) in a.iter_mut().zip(b.iter()) { *a = *a - *b; } } } } impl<T, const R: usize, const C: usize> Add for Matrix<T, R, C> where T: Add<Output = T> + Copy, { type Output = Self; fn add(mut self, rhs: Self) -> Self::Output { self += rhs; self } } impl<T, const R: usize, const C: usize> Sub for Matrix<T, R, C> where T: Sub<Output = T> + Copy, { type Output = Self; fn sub(mut self, rhs: Self) -> Self::Output { self -= rhs; self } } impl<T, const ROW: usize, const COL: usize> Matrix<T, ROW, COL> where T: Zero + Mul<Output = T> + Copy, { pub fn matmul<const NCOL: usize>(&self, rhs: &Matrix<T, COL, NCOL>) -> Matrix<T, ROW, NCOL> { let mut res = Matrix::<T, ROW, NCOL>::zero(); for (res, a) in res.iter_mut().zip(self.iter()) { for (a, b) in a.iter().zip(rhs.iter()) { for (res, b) in res.iter_mut().zip(b.iter()) { *res = *res + *a * *b; } } } res } } impl<T, const ROW: usize, const COL: usize, const MID: usize> Mul<Matrix<T, MID, COL>> for Matrix<T, ROW, MID> where T: Zero + Mul<Output = T> + Copy, { type Output = Matrix<T, ROW, COL>; fn mul(self, rhs: Matrix<T, MID, COL>) -> Self::Output { self.matmul(&rhs) } } impl<T, const R: usize, const C: usize> MulAssign<Matrix<T, C, C>> for Matrix<T, R, C> where T: Zero + Mul<Output = T> + Copy, { fn mul_assign(&mut self, rhs: Matrix<T, C, C>) { *self = self.matmul(&rhs); } } impl<T, const R: usize, const C: usize> Deref for Matrix<T, R, C> { type Target = [[T; C]; R]; fn deref(&self) -> &Self::Target { &self.0 } } impl<T, const R: usize, const C: usize> DerefMut for Matrix<T, R, C> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } // ---------- end const matrix ----------