結果

問題 No.3273 Exactly One Match
ユーザー 遭難者
提出日時 2025-08-07 18:33:13
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 62,528 bytes
コンパイル時間 20,722 ms
コンパイル使用メモリ 343,644 KB
実行使用メモリ 425,168 KB
最終ジャッジ日時 2025-09-12 21:37:45
合計ジャッジ時間 106,866 ms
ジャッジサーバーID
(参考情報)
judge / judge7
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1 WA * 1 TLE * 1
other AC * 5 WA * 6 TLE * 15
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "library/template/template.hpp"
#include <bits/stdc++.h>

#line 3 "library/template/alias.hpp"

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using i128 = __int128_t;
using u128 = __uint128_t;
using pi = std::pair<int, int>;
using pl = std::pair<ll, ll>;
using vi = std::vector<int>;
using vl = std::vector<ll>;
using vs = std::vector<std::string>;
using vc = std::vector<char>;
using vvl = std::vector<vl>;
using vd = std::vector<double>;
using vp = std::vector<pl>;
using vb = std::vector<bool>;
template <typename T> struct infinity {
	static constexpr T max = std::numeric_limits<T>::max();
	static constexpr T min = std::numeric_limits<T>::min();
	static constexpr T value = std::numeric_limits<T>::max() / 2;
	static constexpr T mvalue = std::numeric_limits<T>::min() / 2;
};
template <typename T> constexpr T INF = infinity<T>::value;
constexpr ll inf = INF<ll>;
constexpr ld EPS = 1e-8;
constexpr ld PI = 3.1415926535897932384626;
constexpr int dx[8] = {-1, 0, 1, 0, 1, -1, -1, 1};
constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
#line 3 "library/template/macro.hpp"

#ifndef __COUNTER__
#define __COUNTER__ __LINE__
#endif

#define SELECT4(a, b, c, d, e, ...) e
#define SELECT3(a, b, c, d, ...) d
#define REP_1(a, c) for (ll REP_##c = 0; REP_##c < (ll)(a); ++REP_##c)
#define REP1(a) REP_1(a, __COUNTER__)
#define REP2(i, a) for (ll i = 0; i < (ll)(a); ++i)
#define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)
#define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c))
#define rep(...) SELECT4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
#define RREP_1(a, c) for (ll RREP_##c = (ll)(a) - 1; RREP_##c >= 0; --RREP_##c)
#define RREP1(a) RREP_1(a, __COUNTER__)
#define RREP2(i, a) for (ll i = (ll)(a) - 1; i >= 0; --i)
#define RREP3(i, a, b) for (ll i = (ll)(b) - 1; i >= (ll)(a); --i)
#define rrep(...) SELECT3(__VA_ARGS__, RREP3, RREP2, RREP1)(__VA_ARGS__)
#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define INT(...)                                                               \
	int __VA_ARGS__;                                                           \
	scan(__VA_ARGS__)
#define LL(...)                                                                \
	ll __VA_ARGS__;                                                            \
	scan(__VA_ARGS__)
#define STR(...)                                                               \
	string __VA_ARGS__;                                                        \
	scan(__VA_ARGS__)
#define CHR(...)                                                               \
	char __VA_ARGS__;                                                          \
	scan(__VA_ARGS__)
#define DBL(...)                                                               \
	double __VA_ARGS__;                                                        \
	scan(__VA_ARGS__)
#define LD(...)                                                                \
	ld __VA_ARGS__;                                                            \
	scan(__VA_ARGS__)
#define pb push_back
#define eb emplace_back
#line 3 "library/template/type-traits.hpp"

#line 5 "library/template/type-traits.hpp"

template <typename T, typename... Args> struct function_traits_impl {
	using return_type = T;
	static constexpr std::size_t arg_size = sizeof...(Args);
	template <std::size_t idx>
	using argument_type =
		typename std::tuple_element<idx, std::tuple<Args...>>::type;
	using argument_types = std::tuple<Args...>;
};

template <typename> struct function_traits_helper;
template <typename T, typename Tp, typename... Args>
struct function_traits_helper<T (Tp::*)(Args...)>
	: function_traits_impl<T, Args...> {};
template <typename T, typename Tp, typename... Args>
struct function_traits_helper<T (Tp::*)(Args...) const>
	: function_traits_impl<T, Args...> {};
template <typename T, typename Tp, typename... Args>
struct function_traits_helper<T (Tp::*)(Args...) &>
	: function_traits_impl<T, Args...> {};
template <typename T, typename Tp, typename... Args>
struct function_traits_helper<T (Tp::*)(Args...) const &>
	: function_traits_impl<T, Args...> {};

template <typename F>
using function_traits = function_traits_helper<
	decltype(&std::remove_reference<F>::type::operator())>;
template <typename F>
using function_return_type = typename function_traits<F>::return_type;
template <typename F, std::size_t idx>
using function_argument_type =
	typename function_traits<F>::template argument_type<idx>;
template <typename F>
using function_argument_types = typename function_traits<F>::argument_types;
template <class T>
using is_signed_int =
	std::integral_constant<bool, (std::is_integral<T>::value &&
								  std::is_signed<T>::value) ||
									 std::is_same<T, __int128_t>::value>;
template <class T>
using is_unsigned_int =
	std::integral_constant<bool, (std::is_integral<T>::value &&
								  std::is_unsigned<T>::value) ||
									 std::is_same<T, __uint128_t>::value>;
template <class T>
using is_int = std::integral_constant<bool, is_signed_int<T>::value ||
												is_unsigned_int<T>::value>;
template <typename T, typename = void> struct is_range : std::false_type {};
template <typename T>
struct is_range<
	T,
	decltype(all(std::declval<typename std::add_lvalue_reference<T>::type>()),
			 (void)0)> : std::true_type {};
template <std::size_t size> struct int_least {
	static_assert(size <= 128, "size must be less than or equal to 128");
	using type = typename std::conditional<
		size <= 8, std::int_least8_t,
		typename std::conditional<
			size <= 16, std::int_least16_t,
			typename std::conditional<
				size <= 32, std::int_least32_t,
				typename std::conditional<size <= 64, std::int_least64_t,
										  __int128_t>::type>::type>::type>::
		type;
};
template <std::size_t size> using int_least_t = typename int_least<size>::type;
template <std::size_t size> struct uint_least {
	static_assert(size <= 128, "size must be less than or equal to 128");
	using type = typename std::conditional<
		size <= 8, std::uint_least8_t,
		typename std::conditional<
			size <= 16, std::uint_least16_t,
			typename std::conditional<
				size <= 32, std::uint_least32_t,
				typename std::conditional<size <= 64, std::uint_least64_t,
										  __uint128_t>::type>::type>::type>::
		type;
};
template <std::size_t size>
using uint_least_t = typename uint_least<size>::type;
template <typename T>
using double_size_int = int_least<std::numeric_limits<T>::digits * 2 + 1>;
template <typename T>
using double_size_int_t = typename double_size_int<T>::type;
template <typename T>
using double_size_uint = uint_least<std::numeric_limits<T>::digits * 2>;
template <typename T>
using double_size_uint_t = typename double_size_uint<T>::type;
template <typename T>
using double_size =
	typename std::conditional<std::is_signed<T>::value, double_size_int<T>,
							  double_size_uint<T>>::type;
template <typename T> using double_size_t = typename double_size<T>::type;
#line 2 "library/template/in.hpp"
#include <unistd.h>
#line 5 "library/template/in.hpp"
namespace fastio {
template <std::size_t BUFF_SIZE = 1 << 17, int decimal_precision = 16>
struct Scanner {
  private:
	template <typename, typename = void> struct has_scan : std::false_type {};
	template <class T>
	struct has_scan<
		T, decltype(std::declval<T>().scan(std::declval<Scanner &>()), (void)0)>
		: std::true_type {};
	int fd;
	char buffer[BUFF_SIZE + 1];
	int idx, sz;
	bool state;
	inline void load() {
		int len = sz - idx;
		if (idx < len)
			return;
		std::memcpy(buffer, buffer + idx, len);
		sz = len + read(fd, buffer + len, BUFF_SIZE - len);
		idx = 0;
		buffer[sz] = 0;
	}
	inline char cur() {
		if (idx == sz)
			load();
		if (idx == sz) {
			state = false;
			return '\0';
		}
		return buffer[idx];
	}
	inline void next() {
		if (idx == sz)
			load();
		if (idx == sz)
			return;
		idx++;
	}

  public:
	Scanner() : Scanner(0) {}
	explicit Scanner(int fd) : fd(fd), idx(0), sz(0), state(true) {}
	explicit Scanner(FILE *file)
		: fd(fileno(file)), idx(0), sz(0), state(true) {}

	inline char scan_char() {
		if (idx == sz)
			load();
		return (idx == sz ? '\0' : buffer[idx++]);
	}
	Scanner ignore(int n = 1) {
		if (idx + n > sz)
			load();
		idx += n;
		return (*this);
	}
	inline void skip_space() {

		if (idx == sz)
			load();
		while (('\t' <= cur() && cur() <= '\r') || cur() == ' ') {
			if (++idx == sz)
				load();
		}
	}
	void scan(char &a) {
		skip_space();
		a = scan_char();
	}
	void scan(std::string &a) {
		skip_space();
		a.clear();
		while (cur() != '\0' && (buffer[idx] < '\t' || '\r' < buffer[idx]) &&
			   buffer[idx] != ' ') {
			a += scan_char();
		}
	}
	template <std::size_t len> void scan(std::bitset<len> &a) {
		skip_space();
		if (idx + len > sz)
			load();
		rrep(i, len) a[i] = (buffer[idx++] != '0');
	}
	template <typename T,
			  typename std::enable_if<is_int<T>::value &&
									  !has_scan<T>::value>::type * = nullptr>
	void scan(T &a) {
		skip_space();
		bool neg = false;
		if constexpr (std::is_signed<T>::value ||
					  std::is_same_v<T, __int128_t>) {
			if (cur() == '-') {
				neg = true;
				next();
			}
		}
		if (idx + 40 > sz &&
			(idx == sz || ('0' <= buffer[sz - 1] && buffer[sz - 1] <= '9')))
			load();
		a = 0;
		while ('0' <= buffer[idx] && buffer[idx] <= '9') {
			a = a * 10 + (buffer[idx++] & 15);
		}
		if constexpr (std::is_signed<T>::value ||
					  std::is_same<T, __int128_t>::value) {
			if (neg)
				a = -a;
		}
	}
	template <typename T,
			  typename std::enable_if<std::is_floating_point<T>::value &&
									  !has_scan<T>::value>::type * = nullptr>
	void scan(T &a) {
		skip_space();
		bool neg = false;
		if (cur() == '-') {
			neg = true;
			next();
		}
		a = 0;
		while ('0' <= cur() && cur() <= '9') {
			a = a * 10 + (scan_char() & 15);
		}
		if (cur() == '.') {
			next();
			T n = 0, d = 1;
			for (int i = 0;
				 '0' <= cur() && cur() <= '9' && i < decimal_precision; ++i) {
				n = n * 10 + (scan_char() & 15);
				d *= 10;
			}
			while ('0' <= cur() && cur() <= '9')
				next();
			a += n / d;
		}
		if (neg)
			a = -a;
	}

  private:
	template <std::size_t i, typename... Args>
	void scan(std::tuple<Args...> &a) {
		if constexpr (i < sizeof...(Args)) {
			scan(std::get<i>(a));
			scan<i + 1, Args...>(a);
		}
	}

  public:
	template <typename... Args> void scan(std::tuple<Args...> &a) {
		scan<0, Args...>(a);
	}
	template <typename T, typename U> void scan(std::pair<T, U> &a) {
		scan(a.first);
		scan(a.second);
	}
	template <typename T,
			  typename std::enable_if<is_range<T>::value &&
									  !has_scan<T>::value>::type * = nullptr>
	void scan(T &a) {
		for (auto &i : a)
			scan(i);
	}
	template <typename T,
			  typename std::enable_if<has_scan<T>::value>::type * = nullptr>
	void scan(T &a) {
		a.scan(*this);
	}
	void operator()() {}
	template <typename Head, typename... Tail>
	void operator()(Head &head, Tail &...tail) {
		scan(head);
		operator()(std::forward<Tail &>(tail)...);
	}
	template <typename T> Scanner &operator>>(T &a) {
		scan(a);
		return *this;
	}
	explicit operator bool() const { return state; }
	friend Scanner &getline(Scanner &sc, std::string &a) {
		a.clear();
		char c;
		if ((c = sc.scan_char()) == '\0' || c == '\n')
			return sc;
		a += c;
		while ((c = sc.scan_char()) != '\0' && c != '\n')
			a += c;
		return sc;
	}
};
Scanner<> sc;
} // namespace fastio
using fastio::sc;
#line 6 "library/template/out.hpp"

namespace fastio {
struct Pre {
	char buffer[10000][4];
	constexpr Pre() : buffer() {
		for (int i = 0; i < 10000; ++i) {
			int n = i;
			for (int j = 3; j >= 0; --j) {
				buffer[i][j] = n % 10 | '0';
				n /= 10;
			}
		}
	}
} constexpr pre;
template <std::size_t BUFF_SIZE = 1 << 17, bool debug = false> struct Printer {
  private:
	template <typename, bool = debug, class = void>
	struct has_print : std::false_type {};
	template <typename T>
	struct has_print<
		T, false,
		decltype(std::declval<T>().print(std::declval<Printer &>()), (void)0)>
		: std::true_type {};
	template <typename T>
	struct has_print<
		T, true,
		decltype(std::declval<T>().debug(std::declval<Printer &>()), (void)0)>
		: std::true_type {};
	int fd;
	char buffer[BUFF_SIZE];
	int idx;
	std::size_t decimal_precision;

  public:
	Printer() : Printer((debug ? 2 : 1)) {}
	explicit Printer(int fd) : fd(fd), idx(0), decimal_precision(16) {}
	explicit Printer(FILE *file)
		: fd(fileno(file)), idx(0), decimal_precision(16) {}
	~Printer() { flush(); }
	void set_decimal_precision(std::size_t n) { decimal_precision = n; }
	inline void print_char(char c) {
		buffer[idx++] = c;
		if (idx == BUFF_SIZE)
			flush();
	}
	inline void flush() {
		idx = write(fd, buffer, idx);
		idx = 0;
	}
	void print(char a) {
		if constexpr (debug)
			print_char('\'');
		print_char(a);
		if constexpr (debug)
			print_char('\'');
	}
	void print(bool a) {
		if constexpr (debug)
			print_char('\'');
		print_char('0' + a);
		if constexpr (debug)
			print_char('\'');
	}
	void print(const char *a) {
		if constexpr (debug)
			print_char('\"');
		for (; *a != '\0'; ++a)
			print_char(*a);
		if constexpr (debug)
			print_char('\"');
	}
	template <std::size_t N> void print(const char (&a)[N]) {
		if constexpr (debug)
			print_char('\"');
		for (auto i : a)
			print_char(i);
		if constexpr (debug)
			print_char('\"');
	}
	void print(const std::string &a) {
		if constexpr (debug)
			print_char('\"');
		for (auto i : a)
			print_char(i);
		if constexpr (debug)
			print_char('\"');
	}
	template <std::size_t len> void print(const std::bitset<len> &a) {
		for (int i = len - 1; i >= 0; --i)
			print_char('0' + a[i]);
	}
	template <typename T,
			  typename std::enable_if<is_int<T>::value &&
									  !has_print<T>::value>::type * = nullptr>
	void print(T a) {
		if (!a) {
			print_char('0');
			return;
		}
		if constexpr (is_signed_int<T>::value) {
			if (a < 0) {
				print_char('-');
				a = -a;
			}
		}
		if (static_cast<size_t>(idx + 40) >= BUFF_SIZE)
			flush();
		static char stk[40];
		int top = 40;
		while (a >= 10000) {
			int i = a % 10000;
			a /= 10000;
			top -= 4;
			std::memcpy(stk + top, pre.buffer[i], 4);
		}
		if (a >= 1000) {
			std::memcpy(buffer + idx, pre.buffer[a], 4);
			idx += 4;
		} else if (a >= 100) {
			std::memcpy(buffer + idx, pre.buffer[a] + 1, 3);
			idx += 3;
		} else if (a >= 10) {
			std::memcpy(buffer + idx, pre.buffer[a] + 2, 2);
			idx += 2;
		} else {
			buffer[idx++] = '0' | a;
		}
		std::memcpy(buffer + idx, stk + top, 40 - top);
		idx += 40 - top;
	}
	template <typename T,
			  typename std::enable_if<std::is_floating_point<T>::value &&
									  !has_print<T>::value>::type * = nullptr>
	void print(T a) {
		if (a == infinity<T>::max || a == infinity<T>::value) {
			print("inf");
			return;
		}
		if (a == infinity<T>::min || a == infinity<T>::mvalue) {
			print("-inf");
			return;
		}
		if (std::isnan(a)) {
			print("nan");
			return;
		}
		if (a < 0) {
			print_char('-');
			a = -a;
		}
		T b = a;
		if (b < 1) {
			print_char('0');
		} else {
			std::string s;
			while (b >= 1) {
				s += (char)('0' | (int)std::fmod(b, 10.0));
				b /= 10;
			}
			for (auto i = s.rbegin(); i != s.rend(); ++i) {
				print_char(*i);
			}
		}
		print_char('.');
		for (std::size_t _ = 0; _ < decimal_precision; ++_) {
			a *= 10;
			print_char('0' | (int)std::fmod(a, 10.0));
		}
	}

  private:
	template <std::size_t i, typename... Args>
	void print(const std::tuple<Args...> &a) {
		if constexpr (i < sizeof...(Args)) {
			if constexpr (debug)
				print_char(',');
			print_char(' ');
			print(std::get<i>(a));
			print<i + 1>(a);
		}
	}

  public:
	template <typename... Args> void print(const std::tuple<Args...> &a) {
		if constexpr (debug)
			print_char('(');
		if constexpr (sizeof...(Args) != 0) {
			print(std::get<0>(a));
		}
		print<1, Args...>(a);
		if constexpr (debug)
			print_char(')');
	}
	template <typename T, typename U> void print(const std::pair<T, U> &a) {
		if constexpr (debug)
			print_char('(');
		print(a.first);
		if constexpr (debug)
			print_char(',');
		print_char(' ');
		print(a.second);
		if constexpr (debug)
			print_char(')');
	}
	template <typename T,
			  typename std::enable_if<is_range<T>::value>::type * = nullptr>
	void print(const T &a) {
		if constexpr (debug)
			print_char('{');
		auto it = std::begin(a);
		if (it != std::end(a)) {
			print(*it);
			while (++it != std::end(a)) {
				if constexpr (debug)
					print_char(',');
				print_char(' ');
				print(*it);
			}
		}
		if constexpr (debug)
			print_char('}');
	}
	template <typename T, typename std::enable_if<has_print<T>::value &&
												  !debug>::type * = nullptr>
	void print(const T &a) {
		a.print(*this);
	}
	template <typename T, typename std::enable_if<has_print<T>::value &&
												  debug>::type * = nullptr>
	void print(const T &a) {
		a.debug(*this);
	}
	void operator()() {}
	template <typename Head, typename... Tail>
	void operator()(const Head &head, const Tail &...tail) {
		print(head);
		operator()(std::forward<const Tail &>(tail)...);
	}
	template <typename T> Printer &operator<<(const T &a) {
		print(a);
		return *this;
	}
	Printer &operator<<(Printer &(*f)(Printer &)) { return f(*this); }
};

template <std::size_t BUFF_SIZE, bool debug>
Printer<BUFF_SIZE, debug> &endl(Printer<BUFF_SIZE, debug> &out) {
	out.print_char('\n');
	out.flush();
	return out;
}
template <std::size_t BUFF_SIZE, bool debug>
Printer<BUFF_SIZE, debug> &flush(Printer<BUFF_SIZE, debug> &out) {
	out.flush();
	return out;
}
Printer<> pr;
Printer<1 << 17, true> prd;
} // namespace fastio
using fastio::endl;
using fastio::flush;
using fastio::pr;
using fastio::prd;
#line 3 "library/template/func.hpp"

#line 8 "library/template/func.hpp"

inline constexpr int msb(ull x) {
	int res = x ? 0 : -1;
	if (x & 0xffffffff00000000)
		x &= 0xffffffff00000000, res += 32;
	if (x & 0xffff0000ffff0000)
		x &= 0xffff0000ffff0000, res += 16;
	if (x & 0xff00ff00ff00ff00)
		x &= 0xff00ff00ff00ff00, res += 8;
	if (x & 0xf0f0f0f0f0f0f0f0)
		x &= 0xf0f0f0f0f0f0f0f0, res += 4;
	if (x & 0xcccccccccccccccc)
		x &= 0xcccccccccccccccc, res += 2;
	return res + (x & 0xaaaaaaaaaaaaaaaa ? 1 : 0);
}
inline constexpr int ceil_log2(ull x) { return x ? msb(x - 1) + 1 : 0; }
inline constexpr ull reverse(ull x) {
	x = ((x & 0x5555555555555555) << 1) | ((x & 0xaaaaaaaaaaaaaaaa) >> 1);
	x = ((x & 0x3333333333333333) << 2) | ((x & 0xcccccccccccccccc) >> 2);
	x = ((x & 0x0f0f0f0f0f0f0f0f) << 4) | ((x & 0xf0f0f0f0f0f0f0f0) >> 4);
	x = ((x & 0x00ff00ff00ff00ff) << 8) | ((x & 0xff00ff00ff00ff00) >> 8);

	x = ((x & 0x0000ffff0000ffff) << 16) | ((x & 0xffff0000ffff0000) >> 16);
	return (x << 32) | (x >> 32);
}
inline constexpr ull reverse(ull x, int len) {
	return reverse(x) >> (64 - len);
}
inline constexpr int popcnt(ull x) {
#if __cplusplus >= 202002L
	return std::popcount(x);
#endif
	x = (x & 0x5555555555555555) + ((x >> 1) & 0x5555555555555555);
	x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
	x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f0f0f0f0f);
	x = (x & 0x00ff00ff00ff00ff) + ((x >> 8) & 0x00ff00ff00ff00ff);
	x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff);
	return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff);
}
template <typename T, typename U> inline constexpr bool chmin(T &a, U b) {
	return a > b && (a = b, true);
}
template <typename T, typename U> inline constexpr bool chmax(T &a, U b) {
	return a < b && (a = b, true);
}
inline constexpr ll gcd(ll a, ll b) {
	if (a < 0)
		a = -a;
	if (b < 0)
		b = -b;
	while (b) {
		const ll c = b;
		b = a % b;
		a = c;
	}
	return a;
}
inline constexpr ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
inline constexpr bool is_prime(ll n) {
	if (n <= 1)
		return false;
	for (ll i = 2; i * i <= n; i++) {
		if (n % i == 0)
			return false;
	}
	return true;
}
inline constexpr ll my_pow(ll a, ll b) {
	ll res = 1;
	while (b) {
		if (b & 1)
			res *= a;
		a *= a;
		b >>= 1;
	}
	return res;
}
inline constexpr ll mod_pow(ll a, ll b, const ll &mod) {
	if (mod == 1)
		return 0;
	a %= mod;
	ll res = 1;
	while (b) {
		if (b & 1)
			(res *= a) %= mod;
		(a *= a) %= mod;
		b >>= 1;
	}
	return res;
}
inline ll mod_inv(ll a, const ll &mod) {
	ll b = mod, x = 1, u = 0, t;
	while (b) {
		t = a / b;
		std::swap(a -= t * b, b);
		std::swap(x -= t * u, u);
	}
	if (x < 0)
		x += mod;
	return x;
}
template <typename T, typename U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
	os << p.first << " " << p.second;
	return os;
}
template <typename T, typename U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
	is >> p.first >> p.second;
	return is;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
	for (auto it = std::begin(v); it != std::end(v);) {
		os << *it << ((++it) != std::end(v) ? " " : "");
	}
	return os;
}
template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
	for (T &in : v) {
		is >> in;
	}
	return is;
}
inline void scan() {}
template <class Head, class... Tail>
inline void scan(Head &head, Tail &...tail) {
	sc >> head;
	scan(tail...);
}
template <class T> inline void print(const T &t) { pr << t << '\n'; }
template <class Head, class... Tail>
inline void print(const Head &head, const Tail &...tail) {
	pr << head << ' ';
	print(tail...);
}
template <class... T> inline void fin(const T &...a) {
	print(a...);
	exit(0);
}
template <typename T> inline void dump(const T &a) { prd << a; }
inline void trace() { prd << endl; }
template <typename Head, typename... Tail>
inline void trace(const Head &head, const Tail &...tail) {
	dump(head);
	if (sizeof...(tail))
		prd.print_char(','), prd.print_char(' ');
	trace(tail...);
}
#ifdef ONLINE_JUDGE
#define dbg(...) (void(0))
#else
#define dbg(...)                                                               \
	do {                                                                       \
		prd << #__VA_ARGS__;                                                   \
		prd.print_char(' '), prd.print_char('='), prd.print_char(' ');         \
		trace(__VA_ARGS__);                                                    \
	} while (0)
#endif
#line 3 "library/template/util.hpp"

#line 6 "library/template/util.hpp"
template <typename F> struct REC {
  private:
	F f;

  public:
	explicit constexpr REC(F &&f_) : f(std::forward<F>(f_)) {}
	template <typename... Args>
	constexpr auto operator()(Args &&...args) const {
		return f(*this, std::forward<Args>(args)...);
	}
};
template <typename T, typename Comp = std::less<T>> struct compressor {
  private:
	std::vector<T> data;
	Comp cmp;
	bool sorted = false;

  public:
	compressor() : compressor(Comp()) {}
	compressor(const Comp &cmp) : cmp(cmp) {}
	compressor(const std::vector<T> &dat, const Comp &cmp = Comp())
		: data(dat), cmp(cmp) {}
	compressor(std::vector<T> &&dat, const Comp &cmp = Comp())
		: data(std::move(dat)), cmp(cmp) {}
	compressor(std::initializer_list<T> li, const Comp &cmp = Comp())
		: data(li.begin(), li.end()), cmp(cmp) {}
	void push_back(const T &v) {
		assert(!sorted);
		data.push_back(v);
	}
	void push_back(T &&v) {
		assert(!sorted);
		data.push_back(std::move(v));
	}
	template <typename... Args> void emplace_back(Args &&...args) {
		assert(!sorted);
		data.emplace_back(std::forward<Args>(args)...);
	}
	void push(const std::vector<T> &v) {
		assert(!sorted);
		const int n = data.size();
		data.resize(v.size() + n);
		for (int i = 0; i < (int)v.size(); i++)
			data[i + n] = v[i];
	}
	void build() {
		assert(!sorted);
		sorted = 1;
		std::sort(data.begin(), data.end(), cmp);
		data.erase(unique(data.begin(), data.end(),
						  [&](const T &l, const T &r) -> bool {
							  return !cmp(l, r) && !cmp(r, l);
						  }),
				   data.end());
	}
	const T &operator[](int k) const & {
		assert(sorted);
		return data[k];
	}
	int get_index(const T &v) const {
		assert(sorted);
		return int(lower_bound(data.begin(), data.end(), v, cmp) -
				   data.begin());
	}
	void press(std::vector<T> &v) const {
		assert(sorted);
		for (auto &&i : v)
			i = get_index(i);
	}
	std::vector<int> pressed(const std::vector<T> &v) const {
		assert(sorted);
		std::vector<int> ret(v.size());
		for (int i = 0; i < (int)v.size(); i++)
			ret[i] = get_index(v[i]);
		return ret;
	}
	int size() const {
		assert(sorted);
		return data.size();
	}
};
#line 11 "library/template/template.hpp"
using namespace std;
#line 3 "library/math/modular/modint.hpp"

namespace internal {
struct modint_base {};
} // namespace internal
template <typename T> using is_modint = is_base_of<internal::modint_base, T>;
template <typename T, T mod> struct StaticModInt : internal::modint_base {
	static_assert(is_integral<T>::value, "T must be integral");
	static_assert(is_unsigned<T>::value, "T must be unsgined");
	static_assert(mod > 0, "mod must be positive");
	static_assert(mod <= INF<T>,
				  "mod*2 must be less than or equal to T::max()");

  private:
	using large_t = typename double_size_uint<T>::type;
	using signed_t = typename make_signed<T>::type;
	T val;

  public:
	constexpr StaticModInt() : val(0) {}
	template <typename U,
			  typename enable_if<is_integral<U>::value &&
								 is_unsigned<U>::value>::type * = nullptr>
	constexpr StaticModInt(U x) : val(x % mod) {}
	template <typename U,
			  typename enable_if<is_integral<U>::value &&
								 is_signed<U>::value>::type * = nullptr>
	constexpr StaticModInt(U x) : val{} {
		x %= static_cast<signed_t>(mod);
		if (x < 0)
			x += static_cast<signed_t>(mod);
		val = static_cast<T>(x);
	}
	constexpr T get() const { return val; }
	static constexpr T get_mod() { return mod; }
	static constexpr StaticModInt raw(T v) {
		StaticModInt res;
		res.val = v;
		return res;
	}
	constexpr StaticModInt inv() const { return mod_inv(val, mod); }
	constexpr StaticModInt &operator++() {
		++val;
		if (val == mod)
			val = 0;
		return *this;
	}
	constexpr StaticModInt operator++(int) {
		StaticModInt res = *this;
		++*this;
		return res;
	}
	constexpr StaticModInt &operator--() {
		if (val == 0)
			val = mod;
		--val;
		return *this;
	}
	constexpr StaticModInt operator--(int) {
		StaticModInt res = *this;
		--*this;
		return res;
	}
	constexpr StaticModInt &operator+=(const StaticModInt &x) {
		val += x.val;
		if (val >= mod)
			val -= mod;
		return *this;
	}
	constexpr StaticModInt &operator-=(const StaticModInt &x) {
		if (val < x.val)
			val += mod;
		val -= x.val;
		return *this;
	}
	constexpr StaticModInt &operator*=(const StaticModInt &x) {
		val = static_cast<T>((static_cast<large_t>(val) * x.val) % mod);
		return *this;
	}
	constexpr StaticModInt &operator/=(const StaticModInt &x) {
		return *this *= x.inv();
	}
	friend constexpr StaticModInt operator+(const StaticModInt &l,
											const StaticModInt &r) {
		return StaticModInt(l) += r;
	}
	friend constexpr StaticModInt operator-(const StaticModInt &l,
											const StaticModInt &r) {
		return StaticModInt(l) -= r;
	}
	friend constexpr StaticModInt operator*(const StaticModInt &l,
											const StaticModInt &r) {
		return StaticModInt(l) *= r;
	}
	friend constexpr StaticModInt operator/(const StaticModInt &l,
											const StaticModInt &r) {
		return StaticModInt(l) /= r;
	}
	constexpr StaticModInt operator+() const { return StaticModInt(*this); }
	constexpr StaticModInt operator-() const { return StaticModInt() - *this; }
	friend constexpr bool operator==(const StaticModInt &l,
									 const StaticModInt &r) {
		return l.val == r.val;
	}
	friend constexpr bool operator!=(const StaticModInt &l,
									 const StaticModInt &r) {
		return l.val != r.val;
	}
	constexpr StaticModInt pow(ll a) const {
		StaticModInt v = *this, res = 1;
		if (a < 0) {
			a = -a;
			v = v.inv();
		}
		while (a) {
			if (a & 1)
				res *= v;
			v *= v;
			a >>= 1;
		}
		return res;
	}
	template <typename Sc> void scan(Sc &a) {
		ll x;
		a.scan(x);
		*this = x;
	}
	template <typename Pr> void print(Pr &a) const { a.print(val); }
	template <typename Pr> void debug(Pr &a) const { a.print(val); }
};
template <unsigned int p> using ModInt = StaticModInt<unsigned int, p>;

template <typename T, int id> struct DynamicModInt {
	static_assert(is_integral<T>::value, "T must be integral");
	static_assert(is_unsigned<T>::value, "T must be unsigned");

  private:
	using large_t = typename double_size_uint<T>::type;
	using signed_t = typename make_signed<T>::type;
	T val;
	static T mod;

  public:
	constexpr DynamicModInt() : val(0) {}
	template <typename U,
			  typename enable_if<is_integral<U>::value &&
								 is_unsigned<U>::value>::type * = nullptr>
	constexpr DynamicModInt(U x) : val(x % mod) {}
	template <typename U,
			  typename enable_if<is_integral<U>::value &&
								 is_signed<U>::value>::type * = nullptr>
	constexpr DynamicModInt(U x) : val{} {
		x %= static_cast<signed_t>(mod);
		if (x < 0)
			x += static_cast<signed_t>(mod);
		val = static_cast<T>(x);
	}
	T get() const { return val; }
	static T get_mod() { return mod; }
	static void set_mod(T x) {
		mod = x;
		assert(mod > 0);
		assert(mod <= INF<T>);
	}
	static DynamicModInt raw(T v) {
		DynamicModInt res;
		res.val = v;
		return res;
	}
	DynamicModInt inv() const { return mod_inv(val, mod); }
	DynamicModInt &operator++() {
		++val;
		if (val == mod)
			val = 0;
		return *this;
	}
	DynamicModInt operator++(int) {
		DynamicModInt res = *this;
		++*this;
		return res;
	}
	DynamicModInt &operator--() {
		if (val == 0)
			val = mod;
		--val;
		return *this;
	}
	DynamicModInt operator--(int) {
		DynamicModInt res = *this;
		--*this;
		return res;
	}
	DynamicModInt &operator+=(const DynamicModInt &x) {
		val += x.val;
		if (val >= mod)
			val -= mod;
		return *this;
	}
	DynamicModInt &operator-=(const DynamicModInt &x) {
		if (val < x.val)
			val += mod;
		val -= x.val;
		return *this;
	}
	DynamicModInt &operator*=(const DynamicModInt &x) {
		val = static_cast<T>((static_cast<large_t>(val) * x.val) % mod);
		return *this;
	}
	DynamicModInt &operator/=(const DynamicModInt &x) {
		return *this *= x.inv();
	}
	friend DynamicModInt operator+(const DynamicModInt &l,
								   const DynamicModInt &r) {
		return DynamicModInt(l) += r;
	}
	friend DynamicModInt operator-(const DynamicModInt &l,
								   const DynamicModInt &r) {
		return DynamicModInt(l) -= r;
	}
	friend DynamicModInt operator*(const DynamicModInt &l,
								   const DynamicModInt &r) {
		return DynamicModInt(l) *= r;
	}
	friend DynamicModInt operator/(const DynamicModInt &l,
								   const DynamicModInt &r) {
		return DynamicModInt(l) /= r;
	}
	DynamicModInt operator+() const { return DynamicModInt(*this); }
	DynamicModInt operator-() const { return DynamicModInt() - *this; }
	friend bool operator==(const DynamicModInt &l, const DynamicModInt &r) {
		return l.val == r.val;
	}
	friend bool operator!=(const DynamicModInt &l, const DynamicModInt &r) {
		return l.val != r.val;
	}
	DynamicModInt pow(ll a) const {
		DynamicModInt v = *this, res = 1;
		if (a < 0) {
			a = -a;
			v = v.inv();
		}
		while (a) {
			if (a & 1)
				res *= v;
			v *= v;
			a >>= 1;
		}
		return res;
	}
	template <typename Sc> void scan(Sc &a) {
		ll x;
		a.scan(x);
		*this = x;
	}
	template <typename Pr> void print(Pr &a) const { a.print(val); }
	template <typename Pr> void debug(Pr &a) const { a.print(val); }
};
template <typename T, int id> T DynamicModInt<T, id>::mod = 998244353;
template <int id> using dynamic_modint = DynamicModInt<unsigned int, id>;
using modint = dynamic_modint<-1>;
/**
 * @brief ModInt
 */
#line 4 "library/math/modular/montgomery-modint.hpp"

template <typename T> struct MontgomeryReduction {
	static_assert(is_integral<T>::value, "template argument must be integral");
	static_assert(is_unsigned<T>::value, "template argument must be unsigned");

  private:
	using large_t = typename double_size_uint<T>::type;
	static constexpr int lg = numeric_limits<T>::digits;
	T mod;
	T r;
	T r2;
	T minv;
	T calc_inv() const {
		T t = 0, res = 0;
		rep(i, lg) {
			if (~t & 1) {
				t += mod;
				res += static_cast<T>(1) << i;
			}
			t >>= 1;
		}
		return res;
	}

  public:
	MontgomeryReduction(T x) { set_mod(x); }
	static constexpr int get_lg() { return lg; }
	void set_mod(T x) {
		assert(x > 0);
		assert(x & 1);
		assert(x <= INF<T>);
		mod = x;
		r = (-static_cast<T>(mod)) % mod;
		r2 = (-static_cast<large_t>(mod)) % mod;
		minv = calc_inv();
	}
	inline T get_r() const { return r; }
	inline T get_mod() const { return mod; }
	T reduce(large_t x) const {
		large_t tmp =
			(x + static_cast<large_t>(static_cast<T>(x) * minv) * mod) >> lg;
		return tmp >= mod ? tmp - mod : tmp;
	}
	T transform(large_t x) const { return reduce(x * r2); }
};
template <typename T, int id> struct MontgomeryModInt : internal::modint_base {
	static_assert(is_integral<T>::value, "template argument must be integral");
	static_assert(is_unsigned<T>::value, "template argument must be unsigned");

  private:
	using large_t = typename double_size_uint<T>::type;
	T val;
	static MontgomeryReduction<T> reduction;

  public:
	MontgomeryModInt() : val(0) {}
	template <typename U,
			  typename enable_if<is_integral<U>::value &&
								 is_unsigned<U>::value>::type * = nullptr>
	MontgomeryModInt(U x)
		: val(reduction.transform(
			  x < (static_cast<large_t>(reduction.get_mod())
				   << reduction.get_lg())
				  ? static_cast<large_t>(x)
				  : static_cast<large_t>(x % reduction.get_mod()))) {}
	template <typename U,
			  typename enable_if<is_integral<U>::value &&
								 is_signed<U>::value>::type * = nullptr>
	MontgomeryModInt(U x)
		: MontgomeryModInt(static_cast<typename std::make_unsigned<U>::type>(
			  x < 0 ? -x : x)) {
		if (x < 0 && val)
			val = reduction.get_mod() - val;
	}
	T get() const { return reduction.reduce(val); }
	static T get_mod() { return reduction.get_mod(); }
	static void set_mod(T x) { reduction.set_mod(x); }
	MontgomeryModInt &operator++() {
		val += reduction.get_r();
		if (val >= reduction.get_mod())
			val -= reduction.get_mod();
		return *this;
	}
	MontgomeryModInt operator++(int) {
		MontgomeryModInt res = *this;
		++*this;
		return res;
	}
	MontgomeryModInt &operator--() {
		if (val < reduction.get_r())
			val += reduction.get_mod();
		val -= reduction.get_r();
		return *this;
	}
	MontgomeryModInt operator--(int) {
		MontgomeryModInt res = *this;
		--*this;
		return res;
	}
	MontgomeryModInt &operator+=(const MontgomeryModInt &r) {
		val += r.val;
		if (val >= reduction.get_mod())
			val -= reduction.get_mod();
		return *this;
	}
	MontgomeryModInt &operator-=(const MontgomeryModInt &r) {
		if (val < r.val)
			val += reduction.get_mod();
		val -= r.val;
		return *this;
	}
	MontgomeryModInt &operator*=(const MontgomeryModInt &r) {
		val = reduction.reduce(static_cast<large_t>(val) * r.val);
		return *this;
	}
	MontgomeryModInt pow(ull n) const {
		MontgomeryModInt res = 1, tmp = *this;
		while (n) {
			if (n & 1)
				res *= tmp;
			tmp *= tmp;
			n >>= 1;
		}
		return res;
	}
	MontgomeryModInt inv() const { return pow(reduction.get_mod() - 2); }
	MontgomeryModInt &operator/=(const MontgomeryModInt &r) {
		return *this *= r.inv();
	}
	friend MontgomeryModInt operator+(const MontgomeryModInt &l,
									  const MontgomeryModInt &r) {
		return MontgomeryModInt(l) += r;
	}
	friend MontgomeryModInt operator-(const MontgomeryModInt &l,
									  const MontgomeryModInt &r) {
		return MontgomeryModInt(l) -= r;
	}
	friend MontgomeryModInt operator*(const MontgomeryModInt &l,
									  const MontgomeryModInt &r) {
		return MontgomeryModInt(l) *= r;
	}
	friend MontgomeryModInt operator/(const MontgomeryModInt &l,
									  const MontgomeryModInt &r) {
		return MontgomeryModInt(l) /= r;
	}
	friend bool operator==(const MontgomeryModInt &l,
						   const MontgomeryModInt &r) {
		return l.val == r.val;
	}
	friend bool operator!=(const MontgomeryModInt &l,
						   const MontgomeryModInt &r) {
		return l.val != r.val;
	}
	template <typename Sc> void scan(Sc &a) {
		ll x;
		a.scan(x);
		*this = x;
	}
	template <typename Pr> void print(Pr &a) const { a.print(get()); }
	template <typename Pr> void debug(Pr &a) const { a.print(get()); }
};
template <typename T, int id>
MontgomeryReduction<T> MontgomeryModInt<T, id>::reduction =
	MontgomeryReduction<T>(998244353);
using ArbitraryModInt = MontgomeryModInt<unsigned int, -1>;
/**
 * @brief MontgomeryModInt(モンゴメリ乗算)
 */
#line 4 "library/math/number/miller-rabin.hpp"

template <typename T>
constexpr bool miller_rabin(ull n, const ull base[], int sz) {
	if (T::get_mod() != n)
		T::set_mod(n);
	ull d = n - 1;
	while (~d & 1)
		d >>= 1;
	const T e1 = 1, e2 = n - 1;
	rep(i, sz) {
		ull a = base[i];
		if (n <= a)
			return true;
		ull t = d;
		T y = T(a).pow(t);
		while (t != n - 1 && y != e1 && y != e2) {
			y *= y;
			t <<= 1;
		}
		if (y != e2 && (~t & 1))
			return false;
	}
	return true;
}
constexpr bool is_prime_fast(ull n) {
	constexpr ull base_int[3] = {2, 7, 61},
				  base_ll[7] = {2,		325,	 9375,		28178,
								450775, 9780504, 1795265022};
	if (n == 2)
		return true;
	if (n < 2 || n % 2 == 0)
		return false;
	if (n < (1u << 31))
		return miller_rabin<MontgomeryModInt<unsigned int, -2>>(n, base_int, 3);
	return miller_rabin<MontgomeryModInt<ull, -2>>(n, base_ll, 7);
}
template <ull n> constexpr bool is_prime_v = is_prime(n);
/**
 * @brief Miller-Rabin Primality Test(ミラーラビン素数判定)
 */
#line 3 "library/others/random.hpp"

template <typename Engine> struct Random {
  private:
	Engine rnd;

  public:
	using result_type = typename Engine::result_type;
	Random() : Random(random_device{}()) {}
	Random(result_type seed) : rnd(seed) {}
	result_type operator()() { return rnd(); }
	template <typename IntType = ll> IntType uniform(IntType l, IntType r) {
		static_assert(is_integral<IntType>::value,
					  "template argument must be an integral type");
		return uniform_int_distribution<IntType>{l, r}(rnd);
	}
	template <typename RealType = double>
	RealType uniform_real(RealType l, RealType r) {
		static_assert(is_floating_point<RealType>::value,
					  "template argument must be a floating point type");
		return uniform_real_distribution<RealType>{l, r}(rnd);
	}
	bool uniform_bool() { return uniform<int>(0, 1); }
	template <typename T = ll> pair<T, T> uniform_pair(T l, T r) {
		T a, b;
		do {
			a = uniform<T>(l, r);
			b = uniform<T>(l, r);
		} while (a == b);
		if (a > b)
			swap(a, b);
		return {a, b};
	}
	template <typename Iter> void shuffle(const Iter &first, const Iter &last) {
		std::shuffle(first, last, rnd);
	}
	template <class T> vector<T> permutalion(T n) {
		static_assert(is_integral<T>::value,
					  "template argument must be an integral type");
		vector<T> res(n);
		iota(res.begin(), res.end(), T());
		shuffle(all(res));
		return res;
	}
};
using Random32 = Random<mt19937>;
using Random64 = Random<mt19937_64>;
Random32 rand32;
Random64 rand64;
/**
 * @brief Random(乱数)
 */
#line 3 "library/string/run-length.hpp"

template <typename Cont, typename Comp>
vector<pair<typename Cont::value_type, int>> run_length(const Cont &c,
														const Comp &cmp) {
	vector<pair<typename Cont::value_type, int>> ret;
	if (c.empty())
		return ret;
	ret.emplace_back(c.front(), 1);
	for (int i = 1; i < (int)c.size(); i++) {
		if (cmp(c[i], ret.back().first)) {
			ret.back().second++;
		} else {
			ret.emplace_back(c[i], 1);
		}
	}
	return ret;
}
template <typename Cont>
vector<pair<typename Cont::value_type, int>> run_length(const Cont &c) {
	return run_length(c, equal_to<typename Cont::value_type>());
}
#line 7 "library/math/number/pollard-rho.hpp"

template <typename T, typename Rand> ull pollard_rho(ull n, Rand &rand) {
	if (~n & 1)
		return 2;
	if (T::get_mod() != n)
		T::set_mod(n);
	T c, e = 1;
	auto f = [&](T x) -> T { return x * x + c; };
	constexpr int m = 128;
	while (1) {
		c = rand.uniform(1ull, n - 1);
		T x = rand.uniform(2ull, n - 1), y = x;
		ull g = 1;
		while (g == 1) {
			T p = e, tx = x, ty = y;
			rep(i, m) {
				x = f(x);
				y = f(f(y));
				p *= x - y;
			}
			g = gcd(p.get(), n);
			if (g == 1)
				continue;
			rep(i, m) {
				tx = f(tx);
				ty = f(f(ty));
				g = gcd((tx - ty).get(), n);
				if (g != 1) {
					if (g != n)
						return g;
					break;
				}
			}
		}
	}
	return -1;
}
template <typename T = MontgomeryModInt<ull, -3>, typename Rand = Random64>
vector<ull> factorize(ull n, Rand &rand = rand64) {
	if (n == 1)
		return {};
	vector<ull> res;
	vector<ull> st = {n};
	while (!st.empty()) {
		ull t = st.back();
		st.pop_back();
		if (t == 1)
			continue;
		if (is_prime_fast(t)) {
			res.push_back(t);
			continue;
		}
		ull p = pollard_rho<T>(t, rand);
		st.push_back(p);
		st.push_back(t / p);
	}
	sort(all(res));
	return res;
}
template <typename T = MontgomeryModInt<ull, -3>, typename Rand = Random64>
vector<pair<ull, int>> expfactorize(ull n, Rand &rand = rand64) {
	auto res = factorize<T>(n, rand);
	return run_length(res);
}
/**
 * @brief Pollard's Rho Factorization(ポラード・ロー法)
 */
#line 6 "library/math/number/primitive-root.hpp"

template <typename T = MontgomeryModInt<ull, -4>, typename Rand = Random64>
ull primitive_root(ull n, Rand rand = rand64) {
	assert(is_prime_fast(n));
	if (n == 2)
		return 1;
	if (T::get_mod() != n)
		T::set_mod(n);
	auto divs = factorize(n - 1);
	divs.erase(unique(divs.begin(), divs.end()), divs.end());
	for (auto &x : divs)
		x = (n - 1) / x;
	const T e = 1;
	while (1) {
		ull g = rand.uniform(2ull, n - 1);
		bool ok = 1;
		for (auto x : divs) {
			if (T(g).pow(x) == e) {
				ok = false;
				break;
			}
		}
		if (ok)
			return g;
	}
}
template <ull p, enable_if_t<is_prime_v<p>> * = nullptr>
constexpr ull constexpr_primitive_root() {
	if constexpr (p == 2)
		return 1;
	if constexpr (p == 167772161)
		return 3;
	if constexpr (p == 469762049)
		return 3;
	if constexpr (p == 754974721)
		return 11;
	if constexpr (p == 998244353)
		return 3;
	if constexpr (p == 1224736769)
		return 3;
	if constexpr (p == 1811939329)
		return 11;
	if constexpr (p == 2013265921)
		return 11;
	rep(g, 2, p) {
		if (mod_pow(g, (p - 1) >> 1, p) != 1)
			return g;
	}
	return -1;
}
/**
 * @brief Primitive Root(原始根)
 */
#line 6 "library/math/convolution/convolution.hpp"

template <unsigned int p> struct NthRoot {
  private:
	static constexpr unsigned int lg = msb((p - 1) & (1 - p));

  public:
	array<ModInt<p>, lg + 1> root, inv_root;
	array<ModInt<p>, max(0u, lg - 1)> rate2, irate2;
	array<ModInt<p>, max(0u, lg - 2)> rate3, irate3;
	constexpr NthRoot() : root{}, inv_root{} {
		root[lg] = mod_pow(constexpr_primitive_root<p>(), (p - 1) >> lg, p);
		inv_root[lg] = root[lg].pow(p - 2);
		;
		rrep(i, lg) {
			root[i] = root[i + 1] * root[i + 1];
			inv_root[i] = inv_root[i + 1] * inv_root[i + 1];
		}
		{
			ModInt<p> prod = 1, iprod = 1;
			rep(i, lg - 1) {
				rate2[i] = root[i + 2] * prod;
				irate2[i] = inv_root[i + 2] * iprod;
				prod *= inv_root[i + 2];
				iprod *= root[i + 2];
			}
		}
		{
			ModInt<p> prod = 1, iprod = 1;
			rep(i, lg - 2) {
				rate3[i] = root[i + 3] * prod;
				irate3[i] = inv_root[i + 3] * iprod;
				prod *= inv_root[i + 3];
				iprod *= root[i + 3];
			}
		}
	}
	static constexpr unsigned int get_lg() { return lg; }
};
template <unsigned int p> constexpr NthRoot<p> nth_root;
template <typename T, enable_if_t<is_modint<T>::value> * = nullptr>
void ntt(vector<T> &a) {
	constexpr unsigned int p = T::get_mod();
	const int sz = a.size();
	assert((unsigned int)sz <= ((1 - p) & (p - 1)));
	assert((sz & (sz - 1)) == 0);
	const int lg = msb(sz);
	static constexpr T im = nth_root<p>.root[2];
	for (int i = lg; i >= 1; i -= 2) {
		if (i == 1) {
			T z = 1;
			for (int j = 0; j < sz; j += (1 << i)) {
				for (int k = j; k < j + (1 << (i - 1)); ++k) {
					const T x = a[k], y = a[k + (1 << (i - 1))] * z;
					a[k] = x + y, a[k + (1 << (i - 1))] = x - y;
				}
				if (j + (1 << i) != sz)
					z *= nth_root<p>.rate2[__builtin_ctz(
						~(unsigned int)(j >> i))];
			}
		} else {
			const int offset = 1 << (i - 2);
			T z = 1;
			for (int j = 0; j < sz; j += (1 << i)) {
				for (int k = j; k < j + (1 << (i - 2)); ++k) {
					const T z2 = z * z, z3 = z2 * z;
					const T c0 = a[k], c1 = a[k + offset] * z,
							c2 = a[k + offset * 2] * z2,
							c3 = a[k + offset * 3] * z3;
					const T c0c2 = c0 + c2, c0mc2 = c0 - c2, c1c3 = c1 + c3,
							c1mc3im = (c1 - c3) * im;
					a[k] = c0c2 + c1c3;
					a[k + offset] = c0c2 - c1c3;
					a[k + offset * 2] = c0mc2 + c1mc3im;
					a[k + offset * 3] = c0mc2 - c1mc3im;
				}
				if (j + (1 << i) != sz)
					z *= nth_root<p>.rate3[__builtin_ctz(
						~(unsigned int)(j >> i))];
			}
		}
	}
}
template <typename T, enable_if_t<is_modint<T>::value> * = nullptr>
void intt(vector<T> &a, const bool &f = true) {
	constexpr unsigned int p = T::get_mod();
	const int sz = a.size();
	assert((unsigned int)sz <= ((1 - p) & (p - 1)));
	assert((sz & (sz - 1)) == 0);
	const int lg = msb(sz);
	static constexpr T im = nth_root<p>.inv_root[2];
	for (int i = 2 - (lg & 1); i <= lg; i += 2) {
		if (i == 1) {
			T z = 1;
			for (int j = 0; j < sz; j += (1 << i)) {
				for (int k = j; k < j + (1 << (i - 1)); ++k) {
					const T x = a[k], y = a[k + (1u << (i - 1))];
					a[k] = x + y, a[k + (1u << (i - 1))] = (x - y) * z;
				}
				if (j + (1 << i) != sz)
					z *= nth_root<p>.irate2[__builtin_ctz(
						~(unsigned int)(j >> i))];
			}
		} else {
			const int offset = 1 << (i - 2);
			T z = 1;
			for (int j = 0; j < sz; j += (1 << i)) {
				for (int k = j; k < j + (1 << (i - 2)); ++k) {
					const T z2 = z * z, z3 = z2 * z;
					const T c0 = a[k], c1 = a[k + offset],
							c2 = a[k + offset * 2], c3 = a[k + offset * 3];
					const T c0c1 = c0 + c1, c0mc1 = c0 - c1, c2c3 = c2 + c3,
							c2mc3im = (c2 - c3) * im;
					a[k] = c0c1 + c2c3;
					a[k + offset] = (c0mc1 + c2mc3im) * z;
					a[k + offset * 2] = (c0c1 - c2c3) * z2;
					a[k + offset * 3] = (c0mc1 - c2mc3im) * z3;
				}
				if (j + (1 << i) != sz)
					z *= nth_root<p>.irate3[__builtin_ctz(
						~(unsigned int)(j >> i))];
			}
		}
	}
	if (f) {
		const T inv_sz = T(1) / sz;
		for (auto &x : a)
			x *= inv_sz;
	}
}
template <typename T>
vector<T> convolution_naive(const vector<T> &a, const vector<T> &b) {
	const int sz1 = a.size(), sz2 = b.size();
	vector<T> c(sz1 + sz2 - 1);
	rep(i, sz1) rep(j, sz2) c[i + j] += a[i] * b[j];
	return c;
}
template <unsigned int p>
vector<ModInt<p>> convolution_for_any_mod(const vector<ModInt<p>> &a,
										  const vector<ModInt<p>> &b);
template <typename T, enable_if_t<is_modint<T>::value> * = nullptr>
vector<T> convole(vector<T> a, vector<T> b) {
	const int n = a.size() + b.size() - 1;
	const int lg = ceil_log2(n);
	const int sz = 1 << lg;
	a.resize(sz), b.resize(sz);
	ntt(a), ntt(b);
	rep(i, sz) a[i] *= b[i];
	intt(a);
	a.resize(n);
	return a;
}
template <typename T, enable_if_t<is_modint<T>::value> * = nullptr>
vector<T> convolution(const vector<T> &a, const vector<T> &b) {
	constexpr unsigned int p = T::get_mod();
	const unsigned int sz1 = a.size(), sz2 = b.size();
	if (sz1 == 0 || sz2 == 0)
		return {};
	if (sz1 <= 64 || sz2 <= 64)
		return convolution_naive(a, b);
	if constexpr (((p - 1) & (1 - p)) >= 128) {
		if (sz1 + sz2 - 1 <= ((p - 1) & (1 - p)))
			return convole(a, b);
	}
	return convolution_for_any_mod(a, b);
}

template <unsigned int p = 998244353>
vector<ll> convolution(const vector<ll> &a, const vector<ll> &b) {
	const int sz1 = a.size(), sz2 = b.size();
	vector<ModInt<p>> a1(sz1), b1(sz2);
	rep(i, sz1) a1[i] = a[i];
	rep(i, sz2) b1[i] = b[i];
	auto c1 = convolution(a1, b1);
	vector<ll> c(sz1 + sz2 - 1);
	rep(i, sz1 + sz2 - 1) c[i] = c1[i].get();
	return c;
}
template <unsigned int p>
vector<ModInt<p>> convolution_for_any_mod(const vector<ModInt<p>> &a,
										  const vector<ModInt<p>> &b) {
	const int sz1 = a.size(), sz2 = b.size();
	assert(sz1 + sz2 - 1 <= (1 << 26));
	vector<ll> a1(sz1), b1(sz2);
	rep(i, sz1) a1[i] = a[i].get();
	rep(i, sz2) b1[i] = b[i].get();
	static constexpr ull MOD1 = 469762049;
	static constexpr ull MOD2 = 1811939329;
	static constexpr ull MOD3 = 2013265921;
	static constexpr ull INV1_2 = mod_pow(MOD1, MOD2 - 2, MOD2);
	static constexpr ull INV1_3 = mod_pow(MOD1, MOD3 - 2, MOD3);
	static constexpr ull INV2_3 = mod_pow(MOD2, MOD3 - 2, MOD3);
	auto c1 = convolution<MOD1>(a1, b1);
	auto c2 = convolution<MOD2>(a1, b1);
	auto c3 = convolution<MOD3>(a1, b1);
	vector<ModInt<p>> c(sz1 + sz2 - 1);
	rep(i, sz1 + sz2 - 1) {
		ull x1 = c1[i];
		ull x2 = (c2[i] - x1 + MOD2) * INV1_2 % MOD2;
		ull x3 =
			((c3[i] - x1 + MOD3) * INV1_3 % MOD3 - x2 + MOD3) * INV2_3 % MOD3;
		c[i] = ModInt<p>(x1 + (x2 + x3 * MOD2) % p * MOD1);
	}
	return c;
}
/**
 * @brief Convolution(畳み込み)
 */
#line 4 "library/math/others/combinatorics.hpp"

template <typename T> struct Combinatorics {
  private:
	static vector<T> dat, idat;

  public:
	static void extend(int sz) {
		const int pre_sz = dat.size();
		if (sz < pre_sz)
			return;
		dat.resize(sz + 1, 1);
		idat.resize(sz + 1, 1);
		for (int i = pre_sz; i <= sz; i++)
			dat[i] = dat[i - 1] * i;
		idat[sz] = T(1) / dat[sz];
		for (int i = sz - 1; i >= pre_sz; i--)
			idat[i] = idat[i + 1] * (i + 1);
	}
	static T fac(ll n) {
		if (n < 0)
			return T();
		extend(n);
		return dat[n];
	}
	static T finv(ll n) {
		if (n < 0)
			return T();
		extend(n);
		return idat[n];
	}
	static T inv(ll n) {
		if (n <= 0)
			return T();
		extend(n);
		return dat[n - 1] * idat[n];
	}
	static T com(ll n, ll k) {
		if (k < 0 || n < k || n < 0)
			return T();
		extend(n);
		return dat[n] * idat[k] * idat[n - k];
	}
	static T hom(ll n, ll k) {
		if (n < 0 || k < 0)
			return T();
		return k == 0 ? 1 : com(n + k - 1, k);
	}
	static inline T per(ll n, ll k) {
		if (k < 0 || n < k)
			return T();
		extend(n);
		return dat[n] * idat[n - k];
	}
};
template <typename T> vector<T> Combinatorics<T>::dat = vector<T>(2, 1);
template <typename T> vector<T> Combinatorics<T>::idat = vector<T>(2, 1);
template <long long p> struct COMB {
  private:
	static vector<vector<ModInt<p>>> comb;
	static void init() {
		if (!comb.empty())
			return;
		comb.assign(p, vector<ModInt<p>>(p));
		comb[0][0] = 1;
		for (int i = 1; i < p; i++) {
			comb[i][0] = 1;
			for (int j = i; j > 0; j--)
				comb[i][j] = comb[i - 1][j - 1] + comb[i - 1][j];
		}
	}

  public:
	COMB() { init(); }
	ModInt<p> com(int n, int k) {
		init();
		ModInt<p> ret = 1;
		while (n > 0 || k > 0) {
			int ni = n % p, ki = k % p;
			ret *= comb[ni][ki];
			n /= p;
			k /= p;
		}
		return ret;
	}
};
template <long long p>
vector<vector<ModInt<p>>> COMB<p>::comb = vector<vector<ModInt<p>>>();
/**
 * @brief Combinatorics(組み合わせ)
 */
#line 5 "library/math/fps/fps.hpp"

template <typename mint = ModInt<998244353>>
struct FormalPowerSeries : vector<mint> {
	using vector<mint>::vector;
	using FPS = FormalPowerSeries<mint>;
	using Comb = Combinatorics<mint>;

  private:
	static constexpr unsigned int p = mint::get_mod();

  public:
	FormalPowerSeries() : vector<mint>() {}
	FormalPowerSeries(const vector<mint> &v) : vector<mint>(v) {}
	FormalPowerSeries(vector<mint> &&v) : vector<mint>(move(v)) {}
	inline void shrink() {
		while (!(*this).empty() && (*this).back() == mint())
			(*this).pop_back();
	}
	FPS rev() const {
		FPS res(*this);
		reverse(res.begin(), res.end());
		return res;
	}
	FPS pre(int sz) const {
		FPS res((*this).begin(),
				(*this).begin() + min(sz, (int)(*this).size()));
		if ((int)res.size() < sz)
			res.resize(sz);
		return res;
	}
	FPS &dot(const FPS &r) {
		rep(i, min((*this).size(), r.size()))(*this)[i] *= r[i];
		return *this;
	}
	FPS inv(int d = -1) const {
		const int n = (*this).size();
		if (d == -1)
			d = n;
		FPS res(d);
		res[0] = (*this)[0].inv();
		for (int sz = 1; sz < d; sz <<= 1) {
			FPS f((*this).begin(), (*this).begin() + min(n, 2 * sz));
			FPS g(res.begin(), res.begin() + sz);
			f.resize(2 * sz), g.resize(2 * sz);
			ntt(f), ntt(g);
			f.dot(g);
			intt(f);
			rep(i, sz) f[i] = 0;
			ntt(f);
			f.dot(g);
			intt(f);
			rep(j, sz, min(2 * sz, d)) res[j] = -f[j];
		}
		return res;
	}
	FPS operator+() const { return *this; }
	FPS operator-() const {
		FPS res(*this);
		for (auto &x : res)
			x = -x;
		return res;
	}
	FPS &operator+=(const mint &r) {
		if ((*this).empty())
			(*this).resize(1);
		(*this)[0] += r;
		return *this;
	}
	FPS &operator-=(const mint &r) {
		if ((*this).empty())
			(*this).resize(1);
		(*this)[0] -= r;
		return *this;
	}
	FPS &operator*=(const mint &r) {
		for (auto &x : *this)
			x *= r;
		return *this;
	}
	FPS &operator/=(const mint &r) {
		(*this) *= r.inv();
		return *this;
	}
	FPS &operator+=(const FPS &r) {
		if ((*this).size() < r.size())
			(*this).resize(r.size());
		rep(i, r.size())(*this)[i] += r[i];
		return *this;
	}
	FPS &operator-=(const FPS &r) {
		if ((*this).size() < r.size())
			(*this).resize(r.size());
		rep(i, r.size())(*this)[i] -= r[i];
		return *this;
	}
	FPS &operator*=(const FPS &r) {
		auto ret = convolution(*this, r);
		(*this) = {ret.begin(), ret.end()};
		return *this;
	}
	FPS &operator/=(FPS r) {
		const int n = (*this).size(), m = r.size();
		if (n < m) {
			(*this).clear();
			return *this;
		}
		const int d = n - m + 1;
		reverse((*this).begin(), (*this).end());
		reverse(r.begin(), r.end());
		(*this).resize(d);
		(*this) *= r.inv(d);
		(*this).resize(d);
		reverse((*this).begin(), (*this).end());
		return *this;
	}
	FPS &operator%=(const FPS &r) {
		const int n = (*this).size(), m = r.size();
		if (n < m)
			return *this;
		(*this) -= (*this) / r * r;
		shrink();
		return *this;
	}
	FPS &operator<<=(ll k) {
		(*this).insert((*this).begin(), k, mint(0));
		return *this;
	}
	FPS &operator>>=(ll k) {
		if (k > (ll)(*this).size())
			(*this).clear();
		else
			(*this).erase((*this).begin(), (*this).begin() + k);
		return *this;
	}
	FPS operator<<(ll k) const { return FPS(*this) <<= k; }
	FPS operator>>(ll k) const { return FPS(*this) >>= k; }
	friend FPS operator+(const FPS &l, const mint &r) { return FPS(l) += r; }
	friend FPS operator-(const FPS &l, const mint &r) { return FPS(l) -= r; }
	friend FPS operator*(const FPS &l, const mint &r) { return FPS(l) *= r; }
	friend FPS operator/(const FPS &l, const mint &r) { return FPS(l) /= r; }
	friend FPS operator+(const mint &l, const FPS &r) { return FPS(r) += l; }
	friend FPS operator-(const mint &l, const FPS &r) { return FPS(-r) += l; }
	friend FPS operator*(const mint &l, const FPS &r) { return FPS(r) *= l; }
	friend FPS operator+(const FPS &l, const FPS &r) { return FPS(l) += r; }
	friend FPS operator-(const FPS &l, const FPS &r) { return FPS(l) -= r; }
	friend FPS operator*(const FPS &l, const FPS &r) { return FPS(l) *= r; }
	friend FPS operator/(const FPS &l, const FPS &r) { return FPS(l) /= r; }
	friend FPS operator%(const FPS &l, const FPS &r) { return FPS(l) %= r; }
	pair<FPS, FPS> div_mod(const FPS &r) const {
		FPS q = (*this) / r;
		FPS m;
		if ((*this).size() >= r.size())
			m = (*this) - q * r;
		else
			m = *this;
		m.shrink();
		return {q, m};
	}
	mint operator()(const mint &x) const {
		mint res = 0, w = 1;
		for (auto &v : *this)
			res += v * w, w *= x;
		return res;
	}
	FPS diff() const {
		const int n = (*this).size();
		FPS res(n - 1);
		rep(i, 1, n) res[i - 1] = (*this)[i] * i;
		return res;
	}
	FPS &inplace_diff() {
		(*this).erase((*this).begin());
		mint coeff = 1;
		for (int i = 0; i < (int)(*this).size(); i++) {
			(*this)[i] *= coeff;
			coeff++;
		}
		return *this;
	}
	FPS integral() const {
		const int n = (*this).size();
		FPS res(n + 1);
		Comb::extend(n);
		rep(i, n) res[i + 1] = (*this)[i] * Comb::inv(i + 1);
		return res;
	}
	FPS &inplace_integral() {
		const int n = (*this).size();
		vector<mint> iv(n + 1, 1);
		rep(i, 2, n + 1) iv[i] = -iv[p % i] * (p / i);
		(*this).insert((*this).begin(), mint(0));
		rep(i, 1, n + 1)(*this)[i] *= iv[i];
		return *this;
	}
	FPS log(int d = -1) const {
		const int n = (*this).size();
		if (d == -1)
			d = n;
		FPS res = diff() * inv(d);
		res.resize(d - 1);
		return res.integral();
	}
	FPS &inplace_log(int d = -1) {
		const int n = (*this).size();
		if (d == -1)
			d = n;
		FPS tmp = inv(d);
		(*this).inplace_diff() *= tmp;
		(*this).resize(d - 1);
		return (*this).inplace_integral();
	}
	FPS exp(int d = -1) const {
		const int n = (*this).size();
		if (d == -1)
			d = n;
		if (n <= 1) {
			FPS res(d, mint());
			res[0] = 1;
			return res;
		}
		FPS f = {mint(1) + (*this)[0], (*this)[1]}, res{1, (*this)[1]};
		for (int sz = 2; sz < d; sz <<= 1) {
			f.insert(f.end(), (*this).begin() + min(sz, n),
					 (*this).begin() + min(n, sz << 1));
			f.resize(sz << 1);
			res = res * (f - res.log(sz << 1));
			res.resize(sz << 1);
		}
		res.resize(d);
		return res;
	}
	FPS pow(ll k, int d = -1) const {
		const int n = (*this).size();
		if (d == -1)
			d = n;
		if (k == 0) {
			FPS ans(d, mint());
			ans[0] = 1;
			return ans;
		}
		for (int i = 0; i < n; i++) {
			if ((*this)[i] != mint()) {
				if (i > d / k)
					return FPS(d, mint());
				mint rev = (*this)[i].inv();
				FPS res = (((*this * rev) >> i).log(d) * k).exp(d) *
						  ((*this)[i].pow(k));
				res = (res << (i * k));
				res.resize(d);
				return res;
			}
		}
		return FPS(d, mint());
	}
	FPS sqrt(
		const function<mint(mint)> &get_sqrt = [](mint) { return mint(1); },
		int d = -1) const {
		const int n = (*this).size();
		if (d == -1)
			d = n;
		if ((*this)[0] == mint(0)) {
			rep(i, 1, n) {
				if ((*this)[i] != mint(0)) {
					if (i & 1)
						return {};
					if (d - i / 2 <= 0)
						break;
					auto res = (*this >> i).sqrt(get_sqrt, d - i / 2);
					if (res.empty())
						return {};
					res = res << (i / 2);
					res.resize(d);
					return res;
				}
			}
			return FPS(d);
		}
		auto sqr = get_sqrt((*this)[0]);
		if (sqr * sqr != (*this)[0])
			return {};
		FPS res{sqr};
		const mint inv2 = mint(2).inv();
		FPS f = {(*this)[0]};
		for (int i = 1; i < d; i <<= 1) {
			if (i < n)
				f.insert(f.end(), (*this).begin() + i,
						 (*this).begin() + min(n, i << 1));
			if ((int)f.size() < (i << 1))
				f.resize(i << 1);
			res = (res + f * res.inv(i << 1)) * inv2;
		}
		res.resize(d);
		return res;
	}
};
/**
 * @brief Formal Power Series(形式的冪級数)
 */
#line 4 "code.cpp"
template <typename mint>
vector<FormalPowerSeries<mint>>
transpose(const vector<FormalPowerSeries<mint>> &f) {
	const int h = f.size(), w = f[0].size();
	vector<FormalPowerSeries<mint>> res(w, FormalPowerSeries<mint>(h));
	rep(i, h) rep(j, w) res[j][i] = f[i][j];
	return res;
}
template <typename mint>
vector<FormalPowerSeries<mint>>
multiply(const vector<FormalPowerSeries<mint>> &f,
		 const vector<FormalPowerSeries<mint>> &g) {
	const int h = f.size() + g.size() - 1;
	const int w = f[0].size() + g[0].size() - 1;
	if (h < w) {
		auto ft = transpose(f);
		auto gt = transpose(g);
		return transpose(multiply(ft, gt));
	}
	FormalPowerSeries<mint> a(f.size() * w), b(g.size() * w);
	rep(i, f.size()) rep(j, f[0].size()) a[i * w + j] = f[i][j];
	rep(i, g.size()) rep(j, g[0].size()) b[i * w + j] = g[i][j];
	a *= b;
	vector<FormalPowerSeries<mint>> res(h, FormalPowerSeries<mint>(w));
	rep(i, h) rep(j, w) { res[i][j] = a[i * w + j]; }
	return res;
}
// g(f(x))
template <typename mint>
FormalPowerSeries<mint> composite(FormalPowerSeries<mint> f,
								  FormalPowerSeries<mint> g) {
	using fps = FormalPowerSeries<mint>;
	vector<fps> Q(f.size(), fps(2));
	Q[0][0] = 1;
	rep(i, f.size()) Q[i][1] = -f[i];
	auto dfs =
		REC([&](auto &&dfs, const vector<fps> &q, int n, int k) -> vector<fps> {
			if (n == 0) {
				fps h = g * q[0].inv().rev();
				vector<fps> p(n + 1, fps(k + 1));
				rep(i, g.size()) p[0][i] = h[i + q[0].size() - 1];
				return p;
			}
			auto r = q;
			for (int i = 1; i <= n; i += 2)
				r[i] = -r[i];
			auto t = multiply(q, r);
			rep(i, n / 2 + 1) t[i] = t[i * 2];
			t.resize(n / 2 + 1);
			auto u = dfs(t, n / 2, k * 2);
			vector<fps> s(n + 1, fps(k * 2 + 1));
			for (int i = 0; i <= n / 2; i++)
				s[i * 2 + n % 2] = u[i];
			vector<fps> revr = r;
			reverse(revr.begin(), revr.end());
			for (auto &e : revr)
				e = e.rev();
			vector<fps> p = multiply(s, revr);
			p.resize(2 * n + 1);
			p.erase(p.begin(), p.begin() + n);
			rep(i, n + 1) p[i].erase(p[i].begin(), p[i].begin() + k),
				p[i].resize(k + 1);
			return p;
		});
	auto P = dfs(Q, f.size() - 1, 1);
	fps res(f.size());
	rep(i, f.size()) res[i] = P[i][0];
	return res.rev();
}

// f^{-1}(x)
template <typename mint>
FormalPowerSeries<mint> power_projection(FormalPowerSeries<mint> f,
										 FormalPowerSeries<mint> g = {1}) {
	using fps = FormalPowerSeries<mint>;
	vector<fps> p(f.size(), fps(2)), q(f.size(), fps(2));
	q[0][0] = 1;
	rep(i, f.size()) q[i][1] = -f[i];
	rep(i, g.size()) p[i][0] = g[i];
	int n = f.size() - 1, k = 1;
	while (n) {
		auto r = q;
		for (int i = 1; i <= n; i += 2)
			r[i] = -r[i];
		auto s = multiply(p, r);
		auto t = multiply(q, r);
		vector<fps> u(n / 2 + 1, fps(2 * k + 1)), v(n / 2 + 1, fps(2 * k + 1));
		rep(i, n / 2 + 1) u[i] = s[i * 2 + n % 2], v[i] = t[i * 2];
		p = u, q = v;
		n /= 2, k *= 2;
	}
	return (p[0] * q[0].inv()).pre(f.size());
}
template <typename mint>
FormalPowerSeries<mint>
composittional_inverse(const FormalPowerSeries<mint> &f) {
	using fps = FormalPowerSeries<mint>;
	const int n = f.size() - 1;
	fps h = power_projection(f) * n;
	rep(i, 1, n + 1) h[i] /= i;
	h = h.rev();
	h *= h[0].inv();
	fps g = fps(h.log() * mint(-n).inv()).exp();
	g *= f[1].inv();
	return (g << 1).pre(f.size());
}
using mint = ModInt<998244353>;
using fps = FormalPowerSeries<mint>;
constexpr int INF__ = 1e6 + 2025;
mint fact[INF__ + 1], finv[INF__ + 1];
void solve() {
	fact[0] = 1;
	for (int i = 1; i <= INF__; i++)
		fact[i] = i * fact[i - 1];
	finv[INF__] = fact[INF__].inv();
	for (int i = INF__; i > 0; i--)
		finv[i - 1] = i * finv[i];
	int n;
	mint k;
	long k__;
	cin >> n >> k__;
	k = k__;
	vector<mint> kpow(n + 1);
	kpow[0] = 1;
	rep(i, n) kpow[i + 1] = (k - 1) * kpow[i];
	vector<mint> a(n + 1);
	rep(i, n + 1) {
		a[i] = kpow[i];
		if (i % 2)
			a[i] -= k - 1;
		else
			a[i] += k - 1;
	}
	fps f1(n + 1), f2(n + 1), g1(n + 1), g2(n + 1);
	rep(i, 1, n + 1) f1[i] = mint(i).pow(i - 1) * finv[i] * kpow[i - 1];
	rep(i, 2, n + 1) f2[i] = mint(i).pow(i - 1) * finv[i] * kpow[i - 2];
	rep(i, 1, n + 1) g1[i] = fact[i - 1] * finv[i] * a[i];
	rep(i, 2, n + 1) g2[i] = a[i - 1];
	g2[1] = k;
	auto h1 = composite(f1, g1);
	auto h2 = composite(f2, g1) + composite(f1, g2);
	auto h3 = h1.exp();
	auto h = h2 * h3;
	print(h[n] * fact[n]);
}
int main() {
	solve();
}
0