結果
| 問題 |
No.3225 2×2行列相似判定 〜easy〜
|
| ユーザー |
kwm_t
|
| 提出日時 | 2025-08-08 21:37:00 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,728 bytes |
| コンパイル時間 | 3,513 ms |
| コンパイル使用メモリ | 288,592 KB |
| 実行使用メモリ | 7,720 KB |
| 最終ジャッジ日時 | 2025-08-08 21:37:05 |
| 合計ジャッジ時間 | 4,684 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 2 |
| other | AC * 18 WA * 15 |
ソースコード
#include <bits/stdc++.h>
//#include <atcoder/all>
using namespace std;
//using namespace atcoder;
//using mint = modint1000000007;
//const int mod = 1000000007;
//using mint = modint998244353;
//const int mod = 998244353;
//const int INF = 1e9;
//const long long LINF = 1e18;
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep2(i,l,r)for(int i=(l);i<(r);++i)
#define rrep(i, n) for (int i = (n) - 1; i >= 0; --i)
#define rrep2(i,l,r)for(int i=(r) - 1;i>=(l);--i)
#define all(x) (x).begin(),(x).end()
#define allR(x) (x).rbegin(),(x).rend()
#define P pair<int,int>
template<typename A, typename B> inline bool chmax(A & a, const B & b) { if (a < b) { a = b; return true; } return false; }
template<typename A, typename B> inline bool chmin(A & a, const B & b) { if (a > b) { a = b; return true; } return false; }
template<typename T>
struct Matrix {
int row, column;
std::vector<std::vector<T>>mat;
Matrix(int r = 0, int c = 0, T val = 0) :row(r), column(c) {
mat = std::vector<std::vector<T>>(row, std::vector<T>(column, val));
}
std::vector<T>& operator[](const int i) {
return mat[i];
}
Matrix& operator+=(const Matrix & other) {
assert(row == other.row && column == other.column);
for (int i = 0; i < row; ++i) {
for (int j = 0; j < column; ++j) {
mat[i][j] += other.mat[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix & other) {
assert(row == other.row && column == other.column);
for (int i = 0; i < row; ++i) {
for (int j = 0; j < column; ++j) {
mat[i][j] -= other.mat[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix & other) {
assert(column == other.row);
Matrix ret(row, other.column);
for (int i = 0; i < row; ++i) {
for (int k = 0; k < column; ++k) {
for (int j = 0; j < other.column; ++j) {
ret.mat[i][j] += mat[i][k] * other.mat[k][j];
}
}
}
return *this = ret;
}
Matrix& operator*=(T k) {
for (int i = 0; i < row; ++i) {
for (int j = 0; j < column; ++j) {
mat[i][j] *= k;
}
}
return *this;
}
Matrix operator+(const Matrix other)const { return Matrix(*this) += other; }
Matrix operator-(const Matrix other)const { return Matrix(*this) -= other; }
Matrix operator*(const Matrix other)const { return Matrix(*this) *= other; }
Matrix operator*(const T k)const { return Matrix(*this) *= k; }
std::vector<T> operator*(const std::vector<T> other) const {
assert(column == (int)other.size());
std::vector<T> ret(row);
for (int i = 0; i < row; ++i) {
for (int j = 0; j < column; ++j) {
ret[i] += mat[i][j] * other[j];
}
}
return ret;
}
Matrix pow(long long n) const {
assert(row == column);
if (n == 0) {
Matrix e(row, column);
for (int i = 0; i < row; ++i) e.mat[i][i] = 1;
return e;
}
Matrix ret = pow(n >> 1);
ret *= ret;
if (n & 1) ret *= *this;
return ret;
}
Matrix debug() {
for (int i = 0; i < row; ++i) {
for (int j = 0; j < column; ++j) std::cout << mat[i][j] << " ";
std::cout << std::endl;
}
}
};
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int a, b, c, d; cin >> a >> b >> c >> d;
Matrix<long long> mat(2, 2, 0);
mat[0][0] = a;
mat[0][1] = b;
mat[1][0] = c;
mat[1][1] = d;
cin >> a >> b >> c >> d;
Matrix<long long> mat2(2, 2, 0);
mat2[0][0] = a;
mat2[0][1] = b;
mat2[1][0] = c;
mat2[1][1] = d;
rep(i, 67)rep(j, 67)rep(k, 67)rep(l, 67) {
Matrix<long long> mat3(2, 2, 0);
mat3[0][0] = i;
mat3[0][1] = j;
mat3[1][0] = k;
mat3[1][1] = l;
auto x = mat3 * mat;
auto y = mat2 * mat3;
bool chk = true;
rep(i, 2)rep(j, 2) {
if ((x[i][j] - y[i][j]) % 67)chk = false;
}
if (chk) {
cout << "Yes" << endl;
return 0;
}
}
cout << "No" << endl;
return 0;
}
kwm_t