結果
| 問題 |
No.3226 2×2行列累乗
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-08-08 21:48:42 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 4,324 bytes |
| コンパイル時間 | 7,264 ms |
| コンパイル使用メモリ | 355,884 KB |
| 実行使用メモリ | 7,716 KB |
| 最終ジャッジ日時 | 2025-08-08 21:48:59 |
| 合計ジャッジ時間 | 8,401 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
#pragma GCC optimize("O3")
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
typedef long long ll;
const int INF = 1<<30;
const ll INFLL = 1LL<<60;
const ll MOD = 998244353;
const double INFD = 1.0E10;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, -1, 0, 1};
//const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1};
//const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
using Pair = pair<ll, ll>;
using Graph = vector<vector<ll>>;
using mint = atcoder::modint;
template< class T >
struct Matrix {
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
size_t height() const {return (A.size());}
size_t width() const {return (A[0].size());}
inline const vector< T > &operator[](int k) const {return (A.at(k));}
inline vector< T > &operator[](int k) {return (A.at(k));}
static Matrix I(size_t n) {
Matrix mat(n);
for(int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const {
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << "[";
for(int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i = 0; i < width(); i++) {
int idx = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for(int j = i + 1; j < width(); j++) {
T a = B[j][i];
for(int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
//const int p = 67;
//mint::set_mod(p);
Matrix<ll> A(2, 2);
for (int i = 0; i < 2; i++){
for (int j = 0; j < 2; j++){
ll x; cin >> x;
A[i][j] = x;
}
}
ll s, t, n, k; cin >> s >> t >> n >> k;
mint::set_mod(k);
Matrix<mint> B(2, 2);
for (int i = 0; i < 2; i++){
for (int j = 0; j < 2; j++){
B[i][j] = A[i][j];
}
}
vector<Matrix<mint>> pows(60, Matrix<mint>(2,2));
pows[0] = B;
for (int i = 1; i < 60; i++) pows[i] = pows[i - 1] * pows[i - 1];
Matrix<mint> ans(2, 2); ans[0][0] = 1, ans[1][1] = 1;
for (int i = 0; i < 60; i++){
if ((n >> i) & 1) ans *= pows[i];
}
mint a = ans[0][0] * s + ans[0][1] * t;
mint b = ans[1][0] * s + ans[1][1] * t;
cout << a.val() << " " << b.val() << endl;
return 0;
}