結果
問題 |
No.3226 2×2行列累乗
|
ユーザー |
|
提出日時 | 2025-08-08 21:48:42 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 4,324 bytes |
コンパイル時間 | 7,264 ms |
コンパイル使用メモリ | 355,884 KB |
実行使用メモリ | 7,716 KB |
最終ジャッジ日時 | 2025-08-08 21:48:59 |
合計ジャッジ時間 | 8,401 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
#pragma GCC optimize("O3") #include <bits/stdc++.h> #include <atcoder/all> using namespace std; typedef long long ll; const int INF = 1<<30; const ll INFLL = 1LL<<60; const ll MOD = 998244353; const double INFD = 1.0E10; const int dx[4] = {1, 0, -1, 0}; const int dy[4] = {0, -1, 0, 1}; //const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}; //const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; using Pair = pair<ll, ll>; using Graph = vector<vector<ll>>; using mint = atcoder::modint; template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; size_t height() const {return (A.size());} size_t width() const {return (A[0].size());} inline const vector< T > &operator[](int k) const {return (A.at(k));} inline vector< T > &operator[](int k) {return (A.at(k));} static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); //const int p = 67; //mint::set_mod(p); Matrix<ll> A(2, 2); for (int i = 0; i < 2; i++){ for (int j = 0; j < 2; j++){ ll x; cin >> x; A[i][j] = x; } } ll s, t, n, k; cin >> s >> t >> n >> k; mint::set_mod(k); Matrix<mint> B(2, 2); for (int i = 0; i < 2; i++){ for (int j = 0; j < 2; j++){ B[i][j] = A[i][j]; } } vector<Matrix<mint>> pows(60, Matrix<mint>(2,2)); pows[0] = B; for (int i = 1; i < 60; i++) pows[i] = pows[i - 1] * pows[i - 1]; Matrix<mint> ans(2, 2); ans[0][0] = 1, ans[1][1] = 1; for (int i = 0; i < 60; i++){ if ((n >> i) & 1) ans *= pows[i]; } mint a = ans[0][0] * s + ans[0][1] * t; mint b = ans[1][0] * s + ans[1][1] * t; cout << a.val() << " " << b.val() << endl; return 0; }