結果

問題 No.3229 Liar Game Comibination
ユーザー lif4635
提出日時 2025-08-08 21:51:03
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,128 ms / 2,000 ms
コード長 5,397 bytes
コンパイル時間 178 ms
コンパイル使用メモリ 82,364 KB
実行使用メモリ 134,540 KB
最終ジャッジ日時 2025-08-08 21:51:15
合計ジャッジ時間 9,570 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 29
権限があれば一括ダウンロードができます

ソースコード

diff #

# input
import sys
input = sys.stdin.readline
II = lambda : int(input())
MI = lambda : map(int, input().split())
LI = lambda : [int(a) for a in input().split()]
SI = lambda : input().rstrip()
LLI = lambda n : [[int(a) for a in input().split()] for _ in range(n)]
LSI = lambda n : [input().rstrip() for _ in range(n)]
MI_1 = lambda : map(lambda x:int(x)-1, input().split())
LI_1 = lambda : [int(a)-1 for a in input().split()]

def graph(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[int]]:
    edge = [set() for i in range(n+1+index)]
    for _ in range(m):
        a,b = map(int, input().split())
        a += index
        b += index
        edge[a].add(b)
        if not dir:
            edge[b].add(a)
    return edge

def graph_w(n:int, m:int, dir:bool=False, index:int=-1) -> list[set[tuple]]:
    edge = [set() for i in range(n+1+index)]
    for _ in range(m):
        a,b,c = map(int, input().split())
        a += index
        b += index
        edge[a].add((b,c))
        if not dir:
            edge[b].add((a,c))
    return edge

# mod = 998244353
inf = 1001001001001001001
ordalp = lambda s : ord(s)-65 if s.isupper() else ord(s)-97
ordallalp = lambda s : ord(s)-39 if s.isupper() else ord(s)-97
yes = lambda : print("Yes")
no = lambda : print("No")
yn = lambda flag : print("Yes" if flag else "No")
def acc(a:list[int]):
    sa = [0]*(len(a)+1)
    for i in range(len(a)):
        sa[i+1] = a[i] + sa[i]
    return sa

prinf = lambda ans : print(ans if ans < 1000001001001001001 else -1)
alplow = "abcdefghijklmnopqrstuvwxyz"
alpup = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
alpall = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
URDL = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)}
DIR_4 = [[-1,0],[0,1],[1,0],[0,-1]]
DIR_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]
DIR_BISHOP = [[-1,1],[1,1],[1,-1],[-1,-1]]
prime60 = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
sys.set_int_max_str_digits(0)
# sys.setrecursionlimit(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')

from collections import defaultdict,deque
from heapq import heappop,heappush
from bisect import bisect_left,bisect_right
DD = defaultdict
BSL = bisect_left
BSR = bisect_right

mod = 10 ** 9 + 7

def mat_add(a, b):
    # assert len(a) == len(b)
    # assert len(a[0]) == len(b[0])
    n = len(a)
    m = len(a[0])
    res = [[0]*m for i in range(n)]
    for i in range(n):
        for j in range(m):
            res[i][j] = (a[i][j] + b[i][j])%mod
    return res

def mat_sub(a, b):
    # assert len(a) == len(b)
    # assert len(a[0]) == len(b[0])
    n = len(a)
    m = len(a[0])
    res = [[0]*m for i in range(n)]
    for i in range(n):
        for j in range(m):
            res[i][j] = (a[i][j] - b[i][j])%mod
    return res

def mat_mul(a, b):
    # assert len(a[0]) == len(b)
    n = len(a)
    m = len(b[0])
    res = [[0]*m for i in range(n)]
    for i,r_i in enumerate(res):
        for k,a_ik in enumerate(a[i]):
            for j,b_kj in enumerate(b[k]):
                r_i[j] = (r_i[j] + a_ik*b_kj)%mod
    return res

def mat_pow2(a):
    n = len(a)
    res = [[0]*n for i in range(n)]
    for i,r_i in enumerate(res):
        for k,a_ik in enumerate(a[i]):
            for j,a_kj in enumerate(a[k]):
                r_i[j] = (r_i[j] + a_ik*a_kj)%mod
    return res

def mat_inv(a, mod = mod):
    """いつか実装します"""
    pass

def mat_pow(a, exp):
    n = len(a)
    res = [[int(i == j) for j in range(n)] for i in range(n)]
    
    d = exp.bit_length()
    for i in range(d, -1, -1):
        if (exp >> i) & 1: res = mat_mul(res, a)
        if i == 0: return res
        res = mat_pow2(res)


def GaussJordan_mod(a, mod, is_extended = False):
    """
    in-plece 掃き出し
    is_extended : 拡大係数行列かどうか
    
    行列の慣習に合わせて n, m が swap しています
    """
    n, m = len(a[0]), len(a)
    
    for i in range(m):
        for j in range(n):
            a[i][j] %= mod
    
    rank = 0
    for col in range(n - is_extended):
        for row in range(rank, m):
            if a[row][col] != 0:
                pivot = row
                break
        else:
            continue
        
        a[pivot], a[rank] = a[rank], a[pivot]
        
        inv = pow(a[rank][col], mod-2, mod)
        for i in range(n):
            if a[rank][i] != 0:
                a[rank][i] = a[rank][i] * inv % mod
        
        for row in range(m):
            if row != rank and a[row][col] != 0:
                coef = a[row][col]
                for i in range(n):
                    a[row][i] -= a[rank][i] * coef % mod
                    if a[row][i] < 0: a[row][i] += mod
        
        rank += 1
    return rank

def GaussJordan_xor(n, a, is_extended = False):
    """
    in-plece bit列での掃き出し
    n = 列数
    """
    m = len(a)
    rank = 0
    for col in reversed(range(is_extended, n)):
        for row in range(rank, m):
            if a[row] >> col & 1:
                pivot = row
                break
        else:
            continue
        a[pivot], a[rank] = a[rank], a[pivot]
        for row in range(m):
            if row != rank and a[row] >> col & 1:
                a[row] ^= a[rank]
        rank += 1
    return rank

n, m, k = MI()

mat = []
for i in range(m):
    s = SI()
    mat.append(int(s,2) << 1)

r = GaussJordan_xor(n+1, mat)
print(pow(2,n-r,k))
0