結果
問題 |
No.3225 2×2行列相似判定 〜easy〜
|
ユーザー |
![]() |
提出日時 | 2025-08-08 21:57:13 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 9,689 bytes |
コンパイル時間 | 3,013 ms |
コンパイル使用メモリ | 284,360 KB |
実行使用メモリ | 7,716 KB |
最終ジャッジ日時 | 2025-08-08 21:57:20 |
合計ジャッジ時間 | 4,189 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 33 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; #define rep(i,n) for(ll i=0;i<n;++i) #define all(a) (a).begin(),(a).end() ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; } ll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } template<class T> T div_floor(T a, T b) { return a / b - ((a ^ b) < 0 && a % b); } template<class T> T div_ceil(T a, T b) { return a / b + ((a ^ b) > 0 && a % b); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } namespace noya2 { template<typename T, size_t hw = -1uz> struct matrix { static constexpr int h = hw, w = hw; std::array<T, hw*hw> m; matrix () : m({}) {} matrix (const std::array<T, hw*hw> &_m) : m(_m) {} matrix (const std::array<std::array<T, hw>, hw> &_m){ for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } matrix (const std::vector<std::vector<T>> &_m){ for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } auto operator[](int i) const { return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } auto operator[](int i){ return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } matrix &operator+= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] += r.m[idx(i,j)]; } } return *this; } matrix &operator-= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] -= r.m[idx(i,j)]; } } return *this; } matrix &operator*= (const matrix &r){ matrix ret; for (int i = 0; i < h; i++){ for (int k = 0; k < w; k++){ for (int j = 0; j < r.w; j++){ ret.m[idx(i,j)] += m[idx(i,k)] * r.m[idx(k,j)]; } } } return *this = ret; } matrix operator+ (const matrix &r) const { return matrix(*this) += r; } matrix operator- (const matrix &r) const { return matrix(*this) -= r; } matrix operator* (const matrix &r) const { return matrix(*this) *= r; } matrix& operator*=(const T &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] *= r; } } return *this; } friend matrix operator* (const T &r, const matrix &mat){ return matrix(mat) *= r; } friend matrix operator* (const matrix &mat, const T &r){ return matrix(mat) *= r; } matrix pow(long long n){ if (n == 0) return e(); matrix f = pow(n / 2); matrix ret = f * f; if (n & 1) ret *= (*this); return ret; } int idx(int i, int j){ return i * w + j; } static matrix e(){ matrix ret; for (int i = 0; i < h; i++){ ret[i][i] = T(1); } return ret; } friend std::ostream &operator<<(std::ostream &os, const matrix &mat){ for (int i = 0; i < mat.h; i++){ if (i != 0) os << '\n'; for (int j = 0; j < mat.w; j++){ if (j != 0) os << ' '; os << mat[i][j]; } } return os; } friend std::istream &operator>>(std::istream &is, matrix &mat){ for (int i = 0; i < mat.h; i++){ for (int j = 0; j < mat.w; j++){ is >> mat[i][j]; } } return is; } friend bool operator==(const matrix &a, const matrix &b){ for (int i = 0; i < a.h; i++){ for (int j = 0; j < a.w; j++){ if (a[i][j] != b[i][j]){ return false; } } } return true; } }; template<typename T> struct matrix<T,-1uz> { int h, w; std::vector<T> m; matrix () {} matrix (int _h) : matrix(_h,_h) {} matrix (int _h, int _w) : h(_h), w(_w), m(_h*_w) {} matrix (int _h, int _w, const std::vector<T> &_m) : h(_h), w(_w), m(_m) { assert((int)_m.size() == _h*_w); } matrix (const std::vector<std::vector<T>> &_m){ h = _m.size(); assert(h >= 1); w = _m[0].size(); for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } auto operator[](int i) const { return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } auto operator[](int i){ return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } matrix &operator+= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] += r.m[idx(i,j)]; } } return *this; } matrix &operator-= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] -= r.m[idx(i,j)]; } } return *this; } matrix &operator*= (const matrix &r){ matrix ret(h, r.w); for (int i = 0; i < h; i++){ for (int k = 0; k < w; k++){ for (int j = 0; j < r.w; j++){ ret.m[idx(i,j)] += m[idx(i,k)] * r.m[idx(k,j)]; } } } return *this = ret; } matrix operator+ (const matrix &r) const { return matrix(*this) += r; } matrix operator- (const matrix &r) const { return matrix(*this) -= r; } matrix operator* (const matrix &r) const { return matrix(*this) *= r; } matrix& operator*=(const T &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] *= r; } } return *this; } friend matrix operator* (const T &r, const matrix &mat){ return matrix(mat) *= r; } friend matrix operator* (const matrix &mat, const T &r){ return matrix(mat) *= r; } matrix pow(long long n){ if (n == 0) return e(h); matrix f = pow(n / 2); matrix ret = f * f; if (n & 1) ret *= (*this); return ret; } int idx(int i, int j){ return i * w + j; } static matrix e(int _h){ auto ret = matrix(_h, _h); for (int i = 0; i < _h; i++){ ret[i][i] = T(1); } return ret; } friend std::ostream &operator<<(std::ostream &os, const matrix &mat){ for (int i = 0; i < mat.h; i++){ if (i != 0) os << '\n'; for (int j = 0; j < mat.w; j++){ if (j != 0) os << ' '; os << mat[i][j]; } } return os; } friend std::istream &operator>>(std::istream &is, matrix &mat){ for (int i = 0; i < mat.h; i++){ for (int j = 0; j < mat.w; j++){ is >> mat[i][j]; } } return is; } }; template<typename T, size_t _hw = -1uz> T determinant(matrix<T, _hw> mat){ int hw = mat.h; T ret = 1; for (int i = 0; i < hw; i++) { int idx = -1; for (int j = i; j < hw; j++) { if (mat[j][i] != 0) { idx = j; break; } } if (idx == -1) return 0; if (i != idx) { ret *= T(-1); for (int j = 0; j < hw; j++){ std::swap(mat[i][j],mat[idx][j]); } } ret *= mat[i][i]; T inv = T(1) / mat[i][i]; for (int j = 0; j < hw; j++) { mat[i][j] *= inv; } for (int j = i + 1; j < hw; j++) { T a = mat[j][i]; if (a == 0) continue; for (int k = i; k < hw; k++) { mat[j][k] -= mat[i][k] * a; } } } return ret; } } // namespace noya2 using namespace noya2; void solve() { matrix<ll> A(2,2),B(2,2); rep(i,2)rep(j,2)cin>>A[i][j]; rep(i,2)rep(j,2)cin>>B[i][j]; const ll mod=67; bool flag=true; rep(i,2)rep(j,2){ if (A[i][j]!=B[i][j]){ flag=false; } } if (flag){ cout<<"Yes"<<endl; return; } flag=true; rep(i,2)rep(j,2){ if (A[i][j]!=0){ flag=false; } } if (flag){ cout<<"No"<<endl; return; } flag=true; rep(i,2)rep(j,2){ if (B[i][j]!=0){ flag=false; } } if (flag){ cout<<"No"<<endl; return; } flag=true; if (A[0][0]!=A[1][1]){ flag=false; } if (A[0][1]!=0 or A[1][0]!=0){ flag=false; } if (flag){ cout<<"No"<<endl; return; } flag=true; if (B[0][0]!=B[1][1]){ flag=false; } if (B[0][1]!=0 or B[1][0]!=0){ flag=false; } if (flag){ cout<<"No"<<endl; return; } ll da=A[0][0]*A[1][1]-A[0][1]*A[1][0]; ll ta=0; rep(i,2)ta+=A[i][i]; ll db=B[0][0]*B[1][1]-B[0][1]*B[1][0]; ll tb=0; rep(i,2)tb+=B[i][i]; if ((da-db)%mod==0 and (ta-tb)%mod==0){ cout<<"Yes"<<endl; } else{ cout<<"No"<<endl; } return; } int main() { ll T=1; while (T--){ solve(); } return 0; }