結果

問題 No.3265 地元に帰れば天才扱い!
ユーザー こめだわら
提出日時 2025-08-10 11:13:34
言語 PyPy3
(7.3.15)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,741 bytes
コンパイル時間 356 ms
コンパイル使用メモリ 82,976 KB
実行使用メモリ 71,468 KB
最終ジャッジ日時 2025-09-06 12:32:04
合計ジャッジ時間 5,011 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 4
other RE * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

import typing
class SegTree:
    def __init__(self,
                 op: typing.Callable[[typing.Any, typing.Any], typing.Any],
                 e: typing.Any,
                 v: typing.Union[int, typing.List[typing.Any]]) -> None:
        self._op = op
        self._e = e

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = 0
        while (1 << self._log) < self._n:
            self._log += 1
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)

        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        return self._d[p + self._size]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n
        sml = self._e
        smr = self._e
        left += self._size
        right += self._size

        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def max_right(self, left: int,
                  f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert f(self._e)

        if left == self._n:
            return self._n

        left += self._size
        sm = self._e

        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not f(self._op(sm, self._d[left])):
                while left < self._size:
                    left *= 2
                    if f(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int,
                 f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= right <= self._n
        assert f(self._e)

        if right == 0:
            return 0

        right += self._size
        sm = self._e

        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not f(self._op(self._d[right], sm)):
                while right < self._size:
                    right = 2 * right + 1
                    if f(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])



N=int(input())
A=list(map(int,input().split()))

def op(x,y):
    return x+y

STA=SegTree(op,0,A)
STS=SegTree(op,0,[0]*(N+1))

Q=int(input())
ans=0
for _ in range(Q):
    x,y,l,r=map(int,input().split())
    l-=1
    x-=1
    s=STS.prod(0,x+1)
    ans+=(y-STA.get(x))*s
    STA.set(x,y)
    ans+=STA.prod(l,r)
    STS.set(l,STS.get(l)+1)
    STS.set(r,STS.get(r)-1)
    print(ans)
0