結果
| 問題 |
No.1690 Power Grid
|
| コンテスト | |
| ユーザー |
ntuda
|
| 提出日時 | 2025-08-10 22:31:38 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 468 ms / 3,000 ms |
| コード長 | 2,785 bytes |
| コンパイル時間 | 305 ms |
| コンパイル使用メモリ | 82,712 KB |
| 実行使用メモリ | 80,436 KB |
| 最終ジャッジ日時 | 2025-08-10 22:31:45 |
| 合計ジャッジ時間 | 6,228 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
import typing
class DSU:
'''
Implement (union by size) + (path halving)
Reference:
Zvi Galil and Giuseppe F. Italiano,
Data structures and algorithms for disjoint set union problems
'''
def __init__(self, n: int = 0) -> None:
self._n = n
self.parent_or_size = [-1] * n
def merge(self, a: int, b: int) -> int:
assert 0 <= a < self._n
assert 0 <= b < self._n
x = self.leader(a)
y = self.leader(b)
if x == y:
return x
if -self.parent_or_size[x] < -self.parent_or_size[y]:
x, y = y, x
self.parent_or_size[x] += self.parent_or_size[y]
self.parent_or_size[y] = x
return x
def same(self, a: int, b: int) -> bool:
assert 0 <= a < self._n
assert 0 <= b < self._n
return self.leader(a) == self.leader(b)
def leader(self, a: int) -> int:
assert 0 <= a < self._n
parent = self.parent_or_size[a]
while parent >= 0:
if self.parent_or_size[parent] < 0:
return parent
self.parent_or_size[a], a, parent = (
self.parent_or_size[parent],
self.parent_or_size[parent],
self.parent_or_size[self.parent_or_size[parent]]
)
return a
def size(self, a: int) -> int:
assert 0 <= a < self._n
return -self.parent_or_size[self.leader(a)]
def groups(self) -> typing.List[typing.List[int]]:
leader_buf = [self.leader(i) for i in range(self._n)]
result: typing.List[typing.List[int]] = [[] for _ in range(self._n)]
for i in range(self._n):
result[leader_buf[i]].append(i)
return list(filter(lambda r: r, result))
from itertools import combinations
N,M,K = map(int,input().split())
A = list(map(int,input().split()))
XYZ = [list(map(int,input().split())) for _ in range(M)]
INF = 10 ** 11
cost = [[INF] * N for _ in range(N)]
for i in range(N):
cost[i][i] = 0
for x,y,z in XYZ:
x -= 1
y -= 1
cost[x][y] = z
cost[y][x] = z
for k in range(N):
for i in range(N):
for j in range(N):
if cost[i][k]!=INF and cost[k][j]!=INF:
cost[i][j] = min(cost[i][j], cost[i][k] + cost[k][j])
Q = []
for i in range(N):
for j in range(i+1,N):
Q.append((cost[i][j],i,j))
Q.sort()
ans = INF
for C in combinations(range(N),K):
tmp = 0
C = set(C)
for c in C:
tmp += A[c]
dsu = DSU(N)
cnt = 0
for c,a,b in Q:
if a in C and b in C:
if dsu.same(a,b):
continue
dsu.merge(a,b)
tmp += c
cnt += 1
if cnt == K:
break
ans = min(ans,tmp)
print(ans)
ntuda