結果

問題 No.3236 累乗数大好きbot
ユーザー 👑 p-adic
提出日時 2025-08-12 16:28:27
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 590 ms / 4,000 ms
コード長 44,172 bytes
コンパイル時間 10,919 ms
コンパイル使用メモリ 241,732 KB
実行使用メモリ 51,072 KB
最終ジャッジ日時 2025-08-12 16:29:00
合計ジャッジ時間 27,962 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

// 入力制約/フォーマットチェック
#ifndef INCLUDE_MODE
  #define INCLUDE_MODE
  // #define REACTIVE
  #define USE_GETLINE
#endif
#ifdef INCLUDE_MAIN

void Solve()
{
  static vector<set<ll>> Im{};
  if( Im.empty() ){
    Im.resize( 40 );
    FOR( e , 2 , 40 ){
      FOREQ( n , 1 , ll(1e6) ){
        ll t = TruncatedPower( n , e , ll(1e12)+1 );
        if( t > ll(1e12) ){
          break;
        }
        Im[e] <<= t;
      }
    }
  }
  CEXPR( ll , bound_N , 1e12 );
  GETLINE_COUNT_ASSERT( N_str , ' ' , 1 );
  STOI( N_str , N , 1 , bound_N );
  FOREQINV( e , 39 , 2 ){
    if( In( Im[e] , N ) ){
      RETURN( e );
    }
  }
  RETURN( 1 );
}
REPEAT_MAIN(1e5);

#else // INCLUDE_MAIN
#ifdef INCLUDE_LIBRARY

// https://github.com/p-adic/cpp
// VVV ライブラリは以下に挿入する。

/* 圧縮用 */
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual 
#define IS basic_istream<char,Traits>
#define OS basic_ostream<char,Traits>
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
// CEXPRがCEに依存しているので削除しない。
// redefinitionを避けるため圧縮元はincludeしない。

template <typename INT1 , typename INT2>
ll TruncatedPower( ll n , INT1 e , const INT2& bound )
{

  assert( n >= 0 && e >= 0 && bound >= 0 );

  if( e == 0 ){

    return 1;

  }

  if( n <= 1 ){

    return move( n );

  }

  if( e >= 63 ){

    return bound + 1;

  }

  ll answer = ( e & 1 ) == 0 ? 1 : n;
  e >>= 1;

  while( e > 0 ){

    if( n <= bound / n ){

      n *= n;

    } else {

      return bound + 1;

    }

    if( ( e & 1 ) == 1 ){

      if( answer <= bound / n ){

        answer *= n;

      } else {

        return bound + 1;

      }

    }

    e >>= 1;

  }

  return answer;

}

// AAA ライブラリは以上に挿入する。

#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_LIBRARY
#ifdef DEBUG
  #define _GLIBCXX_DEBUG
  #define SIGNAL signal( SIGABRT , &AlertAbort );
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 )
  #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
  #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
  #define CERRNS( ... ) VariadicCoutNonSep( cerr , __VA_ARGS__ )
  #define CERR_A( I , N , A ) CoutArray( cerr , I , N , A ) << endl
  int exec_mode = 0;
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize ( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define SIGNAL 
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
  #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
  #define CERR( ... ) 
  #define CERRNS( ... ) 
  #define CERR_A( I , N , A ) 
#endif
#ifdef REACTIVE
  #ifdef DEBUG
    #define RSET( A , ... ) A = __VA_ARGS__
  #else
    #define RSET( A , ... ) cin >> A
  #endif
  #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ )
  #define ENDL endl
#else
  #define ENDL "\n"
#endif
#ifdef USE_GETLINE
  #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
  #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ )
  #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ )
  #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
  #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; }
#else
  #define SET( ... ) VariadicCin( cin , __VA_ARGS__ )
  #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ )
  #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); }
  #define CIN_A( LL , I , N , ... ) VE<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ )
  #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE<VE<LL>> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); }
  #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; }
#endif
#include <bits/stdc++.h>
using namespace std;
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL;
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if constexpr( test_case_num_bound > 1 ){ CERR( "テストケースの個数を入力してください。" ); FINISH_MAIN;
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 )
#define CURRENT_TIME ( current_time = static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX )
#define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); }
#define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX )
#define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector<decldecay_t( MAX )>( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX )
#define PR1( A1 , ... ) A1
#define PR2( A1 , A2 , ... ) A2
#define PR3( A1 , A2 , A3 , ... ) A3
#define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP FINAL ; VAR INCR )
#define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) )
#define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) )
#define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) )
#define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ )
#define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL
#define RETURN( ... ) COUT( __VA_ARGS__ ); return

// 型のエイリアス
#define decldecay_t( VAR ) decay_t<decltype( VAR )>
template <typename F , typename...Args> using ret_t = decltype( declval<F>()( declval<Args>()... ) );
template <typename T> using inner_t = typename T::type;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
using path = pair<int,ll>;

/* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/
// BinarySearch
// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
  static_assert( ! is_same<decldecay_t( CONST_TARGET ),uint>::value && ! is_same<decldecay_t( CONST_TARGET ),ull>::value ); \
  ll ANSWER = MINIMUM;							\
  {									\
    ll ANSWER ## _L = MINIMUM;                                          \
    ll ANSWER ## _R = MAXIMUM;                                          \
    ANSWER = UPDATE_ANSWER;						\
    ll EXPRESSION_BS;							\
    const ll CONST_TARGET_BS = ( CONST_TARGET );			\
    ll DIFFERENCE_BS;							\
    while( ANSWER ## _L < ANSWER ## _R ){                               \
      DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \
      CERR( "二分探索中:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CONST_TARGET_BS , "=" , #CONST_TARGET ); \
      if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){			\
	ANSWER ## _R = UPDATE_U;                                        \
      } else {								\
	ANSWER ## _L = UPDATE_L;                                        \
      }									\
      ANSWER = UPDATE_ANSWER;						\
    }									\
    if( ANSWER ## _L > ANSWER ## _R ){                                  \
      CERR( "二分探索失敗:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , ">" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1  ); \
      CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \
      ANSWER = MAXIMUM + 1;						\
    } else {								\
      CERR( "二分探索終了:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" ); \
      CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \
      CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" );	\
      EXPRESSION_BS = ( EXPRESSION );					\
      CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "=" ) , CONST_TARGET_BS ); \
      if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){		\
	CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER );		\
      } else {								\
	CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
	CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \
	ANSWER = MAXIMUM + 1;						\
      }									\
    }									\
  }									\

// 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。
#define MIN_GEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , Mid( ANSWER ## _L , ANSWER ## _R ) )
// 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。
#define MAX_LEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , Mid( ANSWER ## _L + 1 , ANSWER ## _R ) )
// 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。
#define MAX_GEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , Mid( ANSWER ## _L + 1 , ANSWER ## _R ) )
// 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。
#define MIN_LEQ( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , Mid( ANSWER ## _L , ANSWER ## _R ) )
template <typename INT> inline constexpr INT Mid( const INT& l , const INT& r ) { return l + ( ( r - l ) >> 1 ); }

// TwoPoitnterApproach
// VAR_TPAは尺取り法用の変数名の接頭辞で、実際の変数名ではなく、_Lと_Rと_infoがつく。
// ANSWER ## _temp = {VAR_TPA ## _L,VAR_TPA ## _R,VPA_TPA ## _info}を
// {INIT,INIT,INFO_init}で初期化する。VPA_TPA ## _infoは区間和など。
// ANSWER ## _tempがCONTINUE_CONDITIONを満たす限り、ANSWER ## _tempが
// 条件ON_CONDITIONを満たすか否かを判定し、それがtrueになるか
// VAR_TAR ## _LがVAR_TAR ## _Rに追い付くまでVAR_TPA ## _LとVPA_TPA ## _infoの
// 更新操作UPDATE_Lを繰り返し、その後VAR_TPA ## _RとVPA_TPA ## _infoの
// 更新操作UPDATE_Rを行う。(マクロとコンマの制約上、関数オブジェクトを用いる)
// ON_CONDITIONがtrueとなる極大閉区間とその時点でのinfoをANSWERに格納する。
// 例えば長さNの非負整数値配列Aで極大な正値区間とそこでの総和を取得したい場合
// auto update_L = [&]( int& i_L , auto& i_info ){ i_info -= A[i_L++]; };
// auto update_R = [&]( int& i_R , auto& i_info ){ if( ++i_R < N ){ i_info += A[i_R]; } };
// TPA( interval , i , 0 , i_R < N , update_L( i_L , i_info ) , update_R( i_R , i_info ) , A[i_L] > 0 && A[i_R] > 0 , ll( A[0] ) );
// とすればtuple<int,int,ll>値配列intervalに{左端,右端,総和}の列が格納される。
// VAR_TPA ## _infoもintervalにコピーされるので、setやvectorなどのコピーのコストが
// 大きいデータを用いてon,off判定する時はTPAより前に宣言して使う。
#define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO_init ) \
  vector<tuple<decldecay_t( INIT ),decldecay_t( INIT ),decldecay_t( INFO_init )>> ANSWER{}; \
  {									\
    auto init_TPA = INIT;						\
    decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO_init }; \
    auto ANSWER ## _prev = ANSWER ## _temp;				\
    auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp );			\
    auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp );			\
    auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp );			\
    bool on_TPA_prev = false;						\
    while( true ){                                                      \
      bool continuing = CONTINUE_CONDITION;				\
      bool on_TPA = continuing && ( ON_CONDITION );			\
      CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->" , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \
      if( on_TPA_prev && ! on_TPA ){					\
	ANSWER.push_back( ANSWER ## _prev );				\
	CERR( #ANSWER , "に" , ANSWER ## _prev , "を格納します。" );	\
      }									\
      if( continuing ){							\
	if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){			\
	  ANSWER ## _prev = ANSWER ## _temp;				\
	  UPDATE_R;							\
	} else {							\
	  UPDATE_L;							\
	}								\
      } else {								\
	break;								\
      }									\
      on_TPA_prev = on_TPA;						\
    }									\
  }									\

// Random
ll GetRand( const ll& Rand_min , const ll& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }

// Set
#define DECLARATION_OF_HASH( ... )				\
  struct hash<__VA_ARGS__>					\
  {								\
								\
    inline size_t operator()( const __VA_ARGS__& n ) const;	\
								\
  };								\

#define DEFINITION_OF_POP_FOR_SET( SET )                                \
  template <typename T> inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); T answer = *itr; S.erase( itr ); return answer; } \
  template <typename T> inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); T answer = *itr; S.erase( itr ); return answer; } \
  template <typename T> inline SET& operator<<=( SET& S , T t ) { S.insert( move( t ) ); return S; } \
  template <typename T , typename U> inline SET& operator<<=( SET& S , U&& u ) { S.insert( T{ forward<U>( u ) } ); return S; } \
  template <typename T> inline SET& operator>>=( SET& S , const T& t ) { auto itr = S.lower_bound( t ); assert( itr != S.end() && *itr == t ); S.erase( itr ); return S; } \
  template <typename T , typename U> inline SET& operator>>=( SET& S , const U& u ) { return S >>= T{ u }; } \
  template <typename T> inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \

#define DEFINITION_OF_UNION_FOR_SET( SET )                              \
  template <typename T> inline SET& operator|=( SET& S0 , const SET& S1 ) { for( auto& t : S1 ){ S0 += t; } return S0; } \
  template <typename T> inline SET operator|( SET S0 , const SET& S1 ) { return move( S0 |= S1 ); } \

class is_ordered
{

private:
  is_ordered() = delete;
  template <typename T> static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() );
  static constexpr false_type Check( ... );

public:
  template <typename T> static constexpr const bool value = is_same_v< decltype( Check( declval<T>() ) ) , true_type >;

};

template <typename T>
using Set = conditional_t<is_constructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,void>>;

template <typename SET , typename T> inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; }
template <typename SET , typename T> inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; }
template <typename SET , typename T> inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); }
template <typename SET , typename T> inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); }

template <typename SET , typename ITERATOR> inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); }
template <typename SET , typename ITERATOR> inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; }

template <template <typename...> typename SET , typename T , typename...Args> inline bool In( const SET<T,Args...>& S , const T& t ) { return S.count( t ) == 1; }

DEFINITION_OF_POP_FOR_SET( set<T> );
DEFINITION_OF_POP_FOR_SET( unordered_set<T> );
DEFINITION_OF_POP_FOR_SET( multiset<T> );
DEFINITION_OF_POP_FOR_SET( unordered_multiset<T> );

DEFINITION_OF_UNION_FOR_SET( set<T> );
DEFINITION_OF_UNION_FOR_SET( unordered_set<T> );
DEFINITION_OF_UNION_FOR_SET( multiset<T> );
DEFINITION_OF_UNION_FOR_SET( unordered_multiset<T> );
DEFINITION_OF_UNION_FOR_SET( vector<T> );
DEFINITION_OF_UNION_FOR_SET( list<T> );

// Tuple
#define DEFINITION_OF_ARITHMETIC_FOR_TUPLE( OPR )			\
  template <typename T , typename U , template <typename...> typename PAIR> inline auto operator OPR ## =( PAIR<T,U>& t0 , const PAIR<T,U>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); return t0; } \
  template <typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V>& t0 , const TUPLE<T,U,V>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); get<2>( t0 ) OPR ## = get<2>( t1 ); return t0; } \
    template <typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V,W>& t0 , const TUPLE<T,U,V,W>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); get<2>( t0 ) OPR ## = get<2>( t1 ); get<3>( t0 ) OPR ## = get<3>( t1 ); return t0; } \
  template <typename ARG , typename T , typename U , template <typename...> typename PAIR> inline auto operator OPR ## =( PAIR<T,U>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; return t0; } \
  template <typename ARG , typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; get<2>( t0 ) OPR ## = t1; return t0; } \
    template <typename ARG , typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V,W>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; get<2>( t0 ) OPR ## = t1; get<3>( t0 ) OPR ## = t1; return t0; } \
  template <template <typename...> typename TUPLE , typename...ARGS , typename ARG> inline auto operator OPR( const TUPLE<ARGS...>& t0 , const ARG& t1 ) -> decldecay_t( ( get<0>( t0 ) , t0 ) ) { auto t = t0; return move( t OPR ## = t1 ); } \

#define DEFINITION_OF_INCREMENT_FOR_TUPLE( INCR )			\
  template <typename T , typename U , template <typename...> typename PAIR> inline auto operator INCR( PAIR<T,U>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); return t; } \
  template <typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator INCR ( TUPLE<T,U,V>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); INCR get<2>( t ); return t; } \
  template <typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator INCR ( TUPLE<T,U,V,W>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); INCR get<2>( t ); INCR get<3>( t ); return t; } \

DEFINITION_OF_ARITHMETIC_FOR_TUPLE( + );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( - );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( * );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( / );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( % );

DEFINITION_OF_INCREMENT_FOR_TUPLE( ++ );
DEFINITION_OF_INCREMENT_FOR_TUPLE( -- );

template <class Traits , typename T> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T>& arg ){ return is >> get<0>( arg ); }
template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator>>( basic_istream<char,Traits>& is , V<T,U>& arg ) -> decltype((get<0>(arg),is))& { return is >> get<0>( arg ) >> get<1>( arg ); }
template <class Traits , typename T , typename U , typename V> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ); }
template <class Traits , typename T , typename U , typename V , typename W> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V,W>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ) >> get<3>( arg ); }

template <class Traits , typename T> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T>& arg ) { return os << get<0>( arg ); }
template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator<<( basic_ostream<char,Traits>& os , const V<T,U>& arg ) -> decltype((get<0>(arg),os))& { return os << get<0>( arg ) << " " << get<1>( arg ); }
template <class Traits , typename T , typename U , typename V> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T,U,V>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ); }
template <class Traits , typename T , typename U , typename V , typename W> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T,U,V,W>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ) << " " << get<3>( arg ); }

template <int n>
class TupleAccessIndex
{};

template <typename...Types>
class Tuple :
public tuple<Types...>
{

public:
  inline Tuple( Types&&... args );
  template <typename...Args> inline Tuple( Args&&... args );
  
  template <int n> inline auto& operator[]( const TupleAccessIndex<n>& i ) noexcept;
  template <int n> inline const auto& operator[]( const TupleAccessIndex<n>& i ) const noexcept;

};

// structural binding用
template <typename...Types>
class tuple_size<Tuple<Types...>> :
  public tuple_size<tuple<Types...>>
{};

template <size_t n , typename...Types>
class tuple_element<n,Tuple<Types...>> :
  public tuple_element<n,tuple<Types...>>
{};

template <typename T , typename U> using Pair = Tuple<T,U>;
template <typename INT> using T2 = Tuple<INT,INT>;
template <typename INT> using T3 = Tuple<INT,INT,INT>;
template <typename INT> using T4 = Tuple<INT,INT,INT,INT>;

constexpr TupleAccessIndex<0> O{};
constexpr TupleAccessIndex<1> I{};
constexpr TupleAccessIndex<2> II{};
constexpr TupleAccessIndex<3> III{};

template <typename...Types> inline Tuple<Types...>::Tuple( Types&&... args ) : tuple<Types...>( move( args )... ) {}
template <typename...Types> template <typename...Args> inline Tuple<Types...>::Tuple( Args&&... args ) : tuple<Types...>( forward<Args>( args )... ) {}

template <typename...Types> template <int n> inline auto& Tuple<Types...>::operator[]( const TupleAccessIndex<n>& i ) noexcept { return get<n>( *this ); }
template <typename...Types> template <int n> inline const auto& Tuple<Types...>::operator[]( const TupleAccessIndex<n>& i ) const noexcept { return get<n>( *this ); }

#define DEFINITION_OF_HASH_FOR_TUPLE( PAIR )				\
  template <typename T , typename U> inline size_t hash<PAIR<T,U>>::operator()( const PAIR<T,U>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<T> h0; static const hash<U> h1; return ( h0( get<0>( n ) ) * seed ) ^ h1( get<1>( n ) ); } \

template <typename T> DECLARATION_OF_HASH( tuple<T> );
template <typename T , typename U> DECLARATION_OF_HASH( pair<T,U> );
template <typename T , typename U> DECLARATION_OF_HASH( tuple<T,U> );
template <typename T , typename U , typename V> DECLARATION_OF_HASH( tuple<T,U,V> );
template <typename T , typename U , typename V , typename W> DECLARATION_OF_HASH( tuple<T,U,V,W> );

template <typename T> inline size_t hash<tuple<T>>::operator()( const tuple<T>& n ) const { static const hash<T> h; return h(get<0>( n ) ); }
DEFINITION_OF_HASH_FOR_TUPLE( pair );
DEFINITION_OF_HASH_FOR_TUPLE( tuple );
template <typename T , typename U , typename V> inline size_t hash<tuple<T,U,V>>::operator()( const tuple<T,U,V>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<pair<T,U>> h01; static const hash<V> h2; return ( h01( { get<0>( n ) , get<1>( n ) } ) * seed ) ^ h2( get<2>( n ) ); }
template <typename T , typename U , typename V , typename W> inline size_t hash<tuple<T,U,V,W>>::operator()( const tuple<T,U,V,W>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<pair<T,U>> h01; static const hash<pair<V,W>> h23; return ( h01( { get<0>( n ) , get<1>( n ) } ) * seed ) ^ h23( { get<2>( n ) , get<3>( n ) } ); }

// Vector
#define DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , OPR )			\
  template <typename T> inline V<T>& operator OPR ## = ( V<T>& a0 , const V<T>& a1 ) { assert( a0.size() <= a1.size() ); auto itr0 = a0.begin() , end0 = a0.end(); auto itr1 = a1.begin(); while( itr0 != end0 ){ *( itr0++ ) OPR ## = *( itr1++ ); } return a0; } \
  template <typename T> inline V<T>& operator OPR ## = ( V<T>& a , const T& t ) { for( auto& x : a ){ x OPR## = t; } return a; } \
  template <typename T , typename U> inline V<T> operator OPR( V<T> a , const U& u ) { return move( a OPR ## = u ); } \

#define DEFINITION_OF_INCREMENT_FOR_VECTOR( V , INCR )			\
  template <typename T> inline V<T>& operator INCR( V<T>& a ) { for( auto& i : a ){ INCR i; } return a; } \

#define DEFINITION_OF_ARITHMETICS_FOR_VECTOR( V )			\
  template <typename T> inline V<T>& operator<<=( V<T>& a , T t ) { a.push_back( move( t ) ); return a; } \
  template <typename T , typename U> inline V<T>& operator<<=( V<T>& a , U&& u ) { return a <<= T{ forward<U>( u ) }; } \
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , + );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , - );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , * );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , / );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , % );				\
  DEFINITION_OF_INCREMENT_FOR_VECTOR( V , ++ );				\
  DEFINITION_OF_INCREMENT_FOR_VECTOR( V , -- );				\
  template <typename T> inline V<T> operator-( V<T> a ) { return move( a *= T( -1 ) );} \
  template <typename T> inline V<T> operator*( const T& t , V<T> v ) { return move( v *= t ); } \
  template <typename T> inline T pop( V<T>& a ) { assert( !a.empty() ); T answer = move( a.back() ); a.pop_back(); return answer; } \


DEFINITION_OF_ARITHMETICS_FOR_VECTOR( vector );
DEFINITION_OF_ARITHMETICS_FOR_VECTOR( list );

template <typename V> inline auto Get( V& a ) { return [&]( const int& i = 0 ) -> const decldecay_t( a[0] )& { return a[i]; }; }
template <typename T> inline vector<T> id( const int& size ) { vector<T> answer( size ); for( int i = 0 ; i < size ; i++ ){ answer[i] = i; } return answer; }

template <typename V> inline void Sort( V& a , const bool& reversed = false) { using T = decltype(a[0]); if( reversed ){ static auto comp = []( const T& t0 , const T& t1 ) { return t1 < t0; }; sort( a.begin() , a.end() , comp ); } else { sort( a.begin() , a.end() ); } }
template <typename V0 , typename V1> inline void Sort( V0& a , V1& b , const bool& reversed = false ) { const int size = a.size(); assert( size == int( b.size() ) ); vector<pair<decltype(a[0]),decltype(b[0])>> v( size ); for( int i = 0 ; i < size ; i++ ){ v[i] = { move( a[i] ) , move( b[i] ) }; } Sort( v , reversed ); for( int i = 0 ; i < size ; i++ ){ a[i] = move( v[i].first ); b[i] = move( v[i].second ); } }
template <typename V> inline vector<int> IndexSort( const V& a , const bool& reversed = false ) { auto index = id<int>( a.size() ); sort( index.begin() , index.end() , [&]( const int& i , const int& j ) { return reversed ? a[j] < a[i] : a[i] < a[j]; } ); return index; }

template <typename V> inline int len( const V& a ) { return a.size(); }

template <typename V> inline void Reverse( V& a ) { const int size = len( a ) , half = size / 2; for( int i = 0 ; i < half ; i++ ){ swap( a[i] , a[size-1-i] ); } }
;
template <typename V> inline V Reversed( V a ) { Reverse( a ); return move( a ); }

#define DEFINITION_OF_COUT_FOR_VECTOR( V ) template <class Traits , typename Arg> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const V<Arg>& arg ) { auto begin = arg.begin() , end = arg.end(); auto itr = begin; while( itr != end ){ ( itr == begin ? os : os << " " ) << *itr; itr++; } return os; }

DEFINITION_OF_COUT_FOR_VECTOR( vector );
DEFINITION_OF_COUT_FOR_VECTOR( list );
DEFINITION_OF_COUT_FOR_VECTOR( set );
DEFINITION_OF_COUT_FOR_VECTOR( unordered_set );

inline void VariadicResize( const int& size ) {}
template <typename Arg , typename... ARGS> inline void VariadicResize( const int& size , Arg& arg , ARGS&... args ) { arg.resize( size ); VariadicResize( size , args... ); }

// Map
#define DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , OPR )			\
  template <typename T , typename U> inline MAP<T,U>& operator OPR ## = ( MAP<T,U>& a , const pair<T,U>& v ) { a[v.first] OPR ## = v.second; return a; } \
  template <typename T , typename U> inline MAP<T,U>& operator OPR ## = ( MAP<T,U>& a0 , const MAP<T,U>& a1 ) { for( auto& [t,u] : a1 ){ a0[t] OPR ## = u; } return a0; } \
  template <typename T , typename U , typename ARG> inline MAP<T,U> operator OPR( MAP<T,U> a , const ARG& arg ) { return move( a OPR ## = arg ); } \

#define DEFINITION_OF_ARITHMETICS_FOR_MAP( MAP ) \
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , + );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , - );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , * );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , / );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , % );	\

template <typename T , typename U>
using Map = conditional_t<is_constructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,void>>;

DEFINITION_OF_ARITHMETICS_FOR_MAP( map );
DEFINITION_OF_ARITHMETICS_FOR_MAP( unordered_map );

// StdStream
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int& i ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int& i , Arg& arg , ARGS&... args ) { return VariadicSet( is >> arg[i] , i , args... ); }

template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }

template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , Arg&& arg ) { return os << forward<Arg>( arg ); }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , Arg1&& arg1 , Arg2&& arg2 , ARGS&&... args ) { return VariadicCout( os << forward<Arg1>( arg1 ) << " " , forward<Arg2>( arg2 ) , forward<ARGS>( args )... ); }

template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCoutNonSep( basic_ostream<char,Traits>& os , Arg&& arg ) { return os << forward<Arg>( arg ); }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCoutNonSep( basic_ostream<char,Traits>& os , Arg1&& arg1 , Arg2&& arg2 , ARGS&&... args ) { return VariadicCoutNonSep( os << forward<Arg1>( arg1 ) , forward<Arg2>( arg2 ) , forward<ARGS>( args )... ); }

template <class Traits , typename ARRAY> inline basic_ostream<char,Traits>& CoutArray( basic_ostream<char,Traits>& os , const int& i_start , const int& i_ulim , ARRAY&& a ) { for( int i = i_start ; i < i_ulim ; i++ ){ ( i == i_start ? os : ( os << " " ) ) << a[i]; } return os; }

// Sum
template <typename T , template <typename...> typename V , typename OPR> T LeftConnectiveProd( const V<T>& f , OPR opr ) { assert( !f.empty() ); auto itr = f.begin() , end = f.end(); T answer = *( itr++ ); while( itr != end ){ answer = opr( move( answer ) , *( itr++ ) ); } return answer; }
template <typename T , template <typename...> typename V> inline T Sum( const V<T>& f ) { return LeftConnectiveProd( f , []( T t0 , const T& t1 ){ return move( t0 += t1 ); } ); }
template <typename T , template <typename...> typename V> inline T Prod( const V<T>& f ) { return LeftConnectiveProd( f , []( T t0 , const T& t1 ){ return move( t0 *= t1 ); } ); }
template <typename T , template <typename...> typename V> inline T Max( const V<T>& f ) { return *max_element( f.begin() , f.end() ); }
template <typename T , template <typename...> typename V> inline T Min( const V<T>& f ) { return *min_element( f.begin() , f.end() ); }

template <typename T , typename U> inline T SetMax( T& n , const U& m ) { return n < m ? n = m : n; }
template <typename T , typename U> inline T SetMin( T& n , const U& m ) { return n > m ? n = m : n; }

template <typename T , typename UINT>
T Power( const T& t , const UINT& exponent , T init = 1 )
{

  return exponent > 1 ? Power( t * t , exponent >> 1 , move( exponent & 1 ? init *= t : init ) ) : move( exponent > 0 ? init *= t : ( assert( exponent == 0 ) , init ) );

}

template <typename T> inline T PowerMemorisation( const T& t , const int& exponent ) { assert( exponent >= 0 ); static Map<T,vector<T>> memory{}; auto& answer = memory[t]; if( answer.empty() ){ answer.push_back( 1 ); } while( int( answer.size() ) <= exponent ){ answer.push_back( answer.back() * t ); } return answer[exponent]; }

template <typename INT> inline INT ArithmeticProgressionSum( const INT& l , INT r , const INT& d ) { assert( l <= r ); const INT c = ( r - l ) / d; return ( c & 1 ) == 0 ? ( c + 1 ) * ( l + d * ( c >> 1 ) ) : ( ( c + 1 ) >> 1 ) * ( ( l << 1 ) + d * c ); }
template <typename INT> inline INT ArithmeticProgressionSum( const INT& r ) { return ArithmeticProgressionSum( INT{} , r ); }

template <typename T , typename UINT> inline T GeometricProgressionSum( T rate , UINT exponent_max , const T& init ) { T rate_minus = rate - 1; return rate_minus == 0 ? init * ++exponent_max : ( Power( move( rate ) , move( ++exponent_max ) ) - 1 ) / move( rate_minus ) * init; }

template <typename T , typename UINT>
T GeometricProgressionLinearCombinationSum( vector<T> rate , vector<UINT> exponent_max , const vector<T>& init )
{

  const int size = init.size();
  assert( int( rate.size() ) == size && int( exponent_max.size() ) == size );
  T answer{};

  for( int i = 0 ; i < size ; i++ ){

    answer += GeometricProgressionSum( move( rate[i] ) , move( exponent_max[i] ) , init[i] );

  }

  return answer;

}

// Arithmetic/Sqrt
template <typename INT>
INT RoundDownSqrt( const INT& n )
{

  static_assert( is_same_v<INT,int> || is_same_v<INT,uint> || is_same_v<INT,ll> || is_same_v<INT,ull> );
  assert( n >= 0 );
  
  if( n <= 1 ){

    return n;
    
  }

  constexpr INT r_max = is_same_v<INT,int> ? 46341 : is_same_v<INT,uint> ? 65536 : is_same_v<INT,ll> ? 3037000500 : 4294967296;
  INT l = 1 , r = min( r_max , n );

  while( l < r - 1 ){

    const INT m = ( l + r ) >> 1;
    // m * m <= nか否かを判定。
    ( m <= n / m ? l : r ) = m;

  }

  return l;

}

template <typename INT>
INT RoundUpSqrt( const INT& n )
{
  
  static_assert( is_same_v<INT,int> || is_same_v<INT,uint> || is_same_v<INT,ll> || is_same_v<INT,ull> );
  assert( n >= 0 );

  if( n <= 2 ){

    return n;
    
  }

  constexpr INT r_max = is_same_v<INT,int> ? 46341 : is_same_v<INT,uint> ? 65536 : is_same_v<INT,ll> ? 3037000500 : 4294967296;
  const INT n_minus = n - 1;
  INT l = 1 , r = min( r_max , n );

  while( l + 1 < r ){

    const INT m = ( l + r ) >> 1;
    // m * m < nか否かを判定。
    ( m <= n_minus / m ? l : r ) = m;

  }

  return r;

}

template <typename INT> bool IsSquare( const INT& n ) { const INT r = RoundDownSqrt( n ); return n == r * r; }

/* AAA 常設ライブラリの非圧縮版は以上に挿入する。*/

// デバッグ用
#ifdef DEBUG
  inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
#endif

// 入力フォーマットチェック用
// 1行中の変数の個数をSEPARATOR区切りで確認
#define GETLINE_COUNT( S , SEPARATOR ) GETLINE( S ); int S ## _count = 0; int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S = S.size(); for( int i = 0 ; i < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ; i++ ){ if( S[i] == SEPARATOR ){ S ## _count++; } } if( VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S > 0 ){ S ## _count++; }
#define GETLINE_COUNT_ASSERT( S , SEPARATOR , COUNT ) GETLINE_COUNT( S , SEPARATOR ); assert( S ## _count == COUNT )
// 余計な入力の有無を確認
#if defined( DEBUG ) || defined( REACTIVE )
  #define CHECK_REDUNDANT_INPUT 
#else
  #ifdef USE_GETLINE
    #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
  #else
    #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
  #endif
#endif
// MIN <= N <= MAXを満たすNをSから構築
#define STOI( S , N , MIN , MAX ) decldecay_t( MAX ) N = 0; decldecay_t( MAX ) BOUND ## N = max( decldecay_t( MAX )( abs( MIN ) ) , abs( MAX ) ); { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND ## N / 10 ? true : N == BOUND ## N / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND ## N % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } ASSERT( N , MIN , MAX ); }
#define STOI_A( S , I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); FOR( VARIABLE_FOR_STOI_A , 0 , N ){ STOI( S , A ##_VARIABLE_FOR_STOI_A , MIN , MAX ); A[VARIABLE_FOR_STOI_A + I] = A ##_VARIABLE_FOR_STOI_A; }
// Sをstring SEPARATORで区切りTを構築
#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev , VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }

#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_MAIN
0