結果
問題 |
No.430 文字列検索
|
ユーザー |
![]() |
提出日時 | 2025-08-13 08:40:13 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 16 ms / 2,000 ms |
コード長 | 36,805 bytes |
コンパイル時間 | 5,005 ms |
コンパイル使用メモリ | 324,872 KB |
実行使用メモリ | 10,608 KB |
最終ジャッジ日時 | 2025-08-13 08:40:21 |
合計ジャッジ時間 | 6,584 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 14 |
ソースコード
#define INF 4'000'000'000'000'000'037LL #define EPS 1e-11 #include <bits/stdc++.h> using namespace std; namespace { using ld = decltype(EPS); using ll = long long; using uint = unsigned int; using ull = unsigned long long; using pll = pair<ll, ll>; using tlll = tuple<ll, ll, ll>; using tllll = tuple<ll, ll, ll, ll>; #define vc vector template <class T> using vvc = vc<vc<T>>; using vl = vc<ll>; using vpll = vc<pll>; using vstr = vc<string>; using vvl = vvc<ll>; #ifdef __SIZEOF_INT128__ using i128 = __int128_t; using u128 = __uint128_t; #endif #define cauto const auto #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(i, n) for (ll i = 0, nnnnn = ll(n); i < nnnnn; i++) #define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repi1(i, n) for (int i = 0, nnnnn = int(n); i < nnnnn; i++) #define repi2(i, l, r) for (int i = int(l), rrrrr = int(r); i < rrrrr; i++) #define repi3(i, l, r, d) for (int i = int(l), rrrrr = int(r), ddddd = int(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d) #define repi(...) overload4(__VA_ARGS__, repi3, repi2, repi1)(__VA_ARGS__) #define fe(...) for (auto __VA_ARGS__) #define fec(...) for (cauto &__VA_ARGS__) template <class T, class U> inline bool chmin(T &a, U b) { return a > b ? a = b, true : false; } template <class T = ll, class U, class V> inline constexpr T divfloor(U a, V b) { return T(a) / T(b) - (T(a) % T(b) && (T(a) ^ T(b)) < 0); } template <class T = ll, class U, class V> inline constexpr T safemod(U a, V b) { return T(a) - T(b) * divfloor<T>(a, b); } template <class T = ll, class U, class V> constexpr T ipow(U a, V b) { assert(b >= 0); if (b == 0) return 1; if (a == 0 || a == 1) return a; if (a < 0 && a == -1) return b & 1 ? -1 : 1; T res = 1, tmp = a; while (true) { if (b & 1) res *= tmp; b >>= 1; if (b == 0) break; tmp *= tmp; } return res; } template <class T = ll, class A, class B, class M> T mul_limited(A a, B b, M m) { assert(a >= 0 && b >= 0 && m >= 0); if (b == 0) return 0; return T(a) > T(m) / T(b) ? T(m) : T(a) * T(b); } template <class T = ll, class A, class B> T mul_limited(A a, B b) { return mul_limited<T>(a, b, INF); } template <class T = ll, class A, class B, class M> T pow_limited(A a, B b, M m) { assert(a >= 0 && b >= 0 && m >= 0); if (a <= 1 || b == 0) return min(ipow<T>(a, b), T(m)); T res = 1, tmp = a; while (true) { if (b & 1) { if (res > T(m) / tmp) return m; res *= tmp; } b >>= 1; if (b == 0) break; if (tmp > T(m) / tmp) return m; tmp *= tmp; } return res; } template <class T = ll, class A, class B> T pow_limited(A a, B b) { return pow_limited<T>(a, b, INF); } template <class T = ll, class U, class V> vc<T> base_repr(U val, V base) { assert(val >= 0); assert(base >= 2); if (val == 0) return {0}; vc<T> a; while (val > 0) { a.emplace_back(val % base); val /= base; } reverse(a.begin(), a.end()); return a; } template <class T = ll, class U, class V> vc<T> base_repr(U val, V base, int n) { assert(val >= 0); assert(base >= 2); assert(n >= 0); vc<T> a(n); repi(i, n) { a[i] = val % base; val /= base; } reverse(a.begin(), a.end()); return a; } #define ALL(a) (a).begin(), (a).end() template <class T = ll, class V> inline T SZ(const V &x) { return x.size(); } #define eb emplace_back #define LMD(x, fx) ([&](auto x) { return fx; }) template <class F> auto gen_vec(int n, const F &f) { vc<decltype(f(0))> res(n); repi(i, n) res[i] = f(i); return res; } #define GEN_VEC(n, i, fi) (gen_vec(n, LMD(i, fi))) template <class T, size_t d, size_t i = 0, class V> auto dvec(const V (&sz)[d], const T &init) { if constexpr (i < d) return vc(sz[i], dvec<T, d, i + 1>(sz, init)); else return init; } template <class T = ll> T ctol(const char &c, const string &s) { repi(i, SZ<int>(s)) if (s[i] == c) return i; return -1; } template <class T = ll> vc<T> stov(const string &s, char first) { return gen_vec(SZ<int>(s), [&](int i) -> T { return s[i] - first; }); } template <class T = ll> vc<T> stov(const string &s, const string &t) { return gen_vec(SZ<int>(s), [&](int i) -> T { return ctol(s[i], t); }); } template <class T> vc<T> concat(const vc<T> &v) { return v; } template <class T, class... Ts> vc<T> concat(vc<T> v, const vc<Ts> &...vs) { (v.insert(v.end(), ALL(vs)), ...); return v; } template <class T, class U> vc<T> permuted(const vc<T> &a, const vc<U> &p) { const int n = p.size(); vc<T> res(n); repi(i, n) { assert(0 <= p[i] && p[i] < U(a.size())); res[i] = a[p[i]]; } return res; } template <class T, class U, class... Ts> vc<T> permuted(const vc<T> &p, const vc<U> &q, const vc<Ts> &...rs) { return permuted(permuted(p, q), rs...); } template <class V> V reversed(const V &v) { return V(v.rbegin(), v.rend()); } #if __cplusplus < 202002L #else #endif template <class V> void unique(V &v) { v.erase(std::unique(ALL(v)), v.end()); } template <class V, class U> void rotate(V &v, U k) { const U n = v.size(); k = (k % n + n) % n; std::rotate(v.begin(), v.begin() + k, v.end()); } template <class T> vvc<T> top(const vvc<T> &a) { if (a.empty()) return {}; const int n = a.size(), m = a[0].size(); vvc<T> b(m, vc<T>(n)); repi(i, n) { assert(SZ<int>(a[i]) == m); repi(j, m) b[j][i] = a[i][j]; } return b; } template <class T> struct MonoidAdd { using S = T; static constexpr S op(S a, S b) { return a + b; } static constexpr S e() { return 0; } }; template <class T, const T infty = INF> struct MonoidMin { using S = T; static constexpr S op(S a, S b) { return min(a, b); } static constexpr S e() { return infty; } }; template <class T, const T infty = INF> struct MonoidMax { using S = T; static constexpr S op(S a, S b) { return max(a, b); } static constexpr S e() { return -infty; } }; template <class M> vc<typename M::S> cuml(const vc<typename M::S> &v, int left_index = 0) { const int n = v.size(); vc<typename M::S> res(n + 1); res[0] = M::e(); repi(i, n) res[i + 1] = M::op(res[i], v[i]); res.erase(res.begin(), res.begin() + left_index); return res; } template <class T> vc<T> cumlsum(const vc<T> &v, int left_index = 0) { return cuml<MonoidAdd<T>>(v, left_index); } const vpll DRULgrid = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; const vpll DRULplane = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; template <class T> struct is_random_access_iterator { static constexpr bool value = is_same_v< typename iterator_traits<T>::iterator_category, random_access_iterator_tag >; }; template <class T> constexpr bool is_random_access_iterator_v = is_random_access_iterator<T>::value; #if __cplusplus < 202002L struct identity { template <class T> constexpr T &&operator()(T &&t) const noexcept { return forward<T>(t); } }; namespace internal { template <class T = ll, class V, class Judge> inline T bound_helper(const V &v, Judge judge) { int l = -1, r = v.size(); while (r - l > 1) { int m = (l + r) / 2; if (judge(m)) l = m; else r = m; } return r; } }; template <class T = ll, class V, class Value, class Comp = less<>, class Proj = identity> inline T LB(const V &v, const Value &val, Comp comp = {}, Proj proj = {}) { return internal::bound_helper(v, [&](int i) -> bool { return comp(proj(*(v.begin() + i)), val); }); } #define DEFAULT_COMP less<> #else template <class T = ll, class V, class Value, class Comp = ranges::less, class Proj = identity> inline T LB(const V &v, const Value &val, Comp comp = {}, Proj proj = {}) { return ranges::lower_bound(v, val, comp, proj) - v.begin(); } template <class T = ll, class V, class Value, class Comp = ranges::less, class Proj = identity> inline T UB(const V &v, const Value &val, Comp comp = {}, Proj proj = {}) { return ranges::upper_bound(v, val, comp, proj) - v.begin(); } #define DEFAULT_COMP ranges::less #endif #if __cplusplus < 202002L inline constexpr ull bit_width(ull x) { return x == 0 ? 0 : 64 - __builtin_clzll(x); } inline constexpr ull popcount(ull x) { return __builtin_popcountll(x); } #else inline constexpr ll bit_width(ll x) { return std::bit_width((ull)x); } inline constexpr ll bit_floor(ll x) { return std::bit_floor((ull)x); } inline constexpr ll bit_ceil(ll x) { return std::bit_ceil((ull)x); } inline constexpr ll countr_zero(ll x) { assert(x != 0); return std::countr_zero((ull)x); } inline constexpr ll popcount(ll x) { return std::popcount((ull)x); } inline constexpr bool has_single_bit(ll x) { return std::has_single_bit((ull)x); } #endif #define dump(...) #define oj(...) __VA_ARGS__ namespace fastio { static constexpr uint32_t SIZ = 1 << 17; char ibuf[SIZ]; char obuf[SIZ]; char out[100]; uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SIZ - pir + pil, stdin); pil = 0; if (pir < SIZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd1(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd1_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd1(ll &x) { rd1_integer(x); } template <class T, class U> void rd1(pair<T, U> &p) { return rd1(p.first), rd1(p.second); } template <size_t N = 0, typename T> void rd1_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd1(x); rd1_tuple<N + 1>(t); } } template <class... T> void rd1(tuple<T...> &tpl) { rd1_tuple(tpl); } template <size_t N = 0, typename T> void rd1(array<T, N> &x) { for (auto &d: x) rd1(d); } template <class T> void rd1(vc<T> &x) { for (auto &d: x) rd1(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd1(h), read(t...); } void wt1(const char c) { if (por == SIZ) flush(); obuf[por++] = c; } void wt1(const string s) { for (char c: s) wt1(c); } template <typename T> void wt1_integer(T x) { if (por > SIZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <class T, enable_if_t<is_integral_v<T>, int> = 0> void wt1(T x) { wt1_integer(x); } template <class T, class U> void wt1(const pair<T, U> &val) { wt1(val.first); wt1(' '); wt1(val.second); } template <size_t N = 0, typename T> void wt1_tuple(const T &t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt1(' '); } const auto x = std::get<N>(t); wt1(x); wt1_tuple<N + 1>(t); } } template <class... T> void wt1(const tuple<T...> &tpl) { wt1_tuple(tpl); } template <class T, size_t S> void wt1(const array<T, S> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt1(' '); wt1(val[i]); } } template <class T> void wt1(const vector<T> &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt1(' '); wt1(val[i]); } } void print() { wt1('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt1(head); if (sizeof...(Tail)) wt1(' '); print(forward<Tail>(tail)...); } } // namespace fastio struct Dummy { Dummy() { atexit(fastio::flush); } } dummy; namespace internal { template <class... Ts> void READnodump(Ts &...a) { fastio::read(a...); } template <class T> void READVECnodump(int n, vc<T> &v) { v.resize(n); READnodump(v); } template <class T, class... Ts> void READVECnodump(int n, vc<T> &v, vc<Ts> &...vs) { READVECnodump(n, v), READVECnodump(n, vs...); } template <class T> void READVEC2nodump(int n, int m, vvc<T> &v) { v.assign(n, vc<T>(m)); READnodump(v); } template <class T, class... Ts> void READVEC2nodump(int n, int m, vvc<T> &v, vvc<Ts> &...vs) { READVEC2nodump(n, m, v), READVEC2nodump(n, m, vs...); } template <class T> void READJAGnodump(int n, vvc<T> &v) { v.resize(n); repi(i, n) { int k; READnodump(k); READVECnodump(k, v[i]); } } template <class T, class... Ts> void READJAGnodump(int n, vvc<T> &v, vvc<Ts> &...vs) { READJAGnodump(n, v), READJAGnodump(n, vs...); } }; // namespace internal #define READ(...) internal::READnodump(__VA_ARGS__); dump(__VA_ARGS__) #define IN(T, ...) T __VA_ARGS__; READ(__VA_ARGS__) #define LL(...) IN(ll, __VA_ARGS__) #define STR(...) IN(string, __VA_ARGS__) #define READVEC(...) internal::READVECnodump(__VA_ARGS__); dump(__VA_ARGS__) #define VEC(T, n, ...) vc<T> __VA_ARGS__; READVEC(n, __VA_ARGS__) #define PRINT fastio::print template <class T, class U, class P> pair<T, U> operator+=(pair<T, U> &a, const P &b) { a.first += b.first; a.second += b.second; return a; } template <class T, class U, class P> pair<T, U> operator+(pair<T, U> &a, const P &b) { return a += b; } template <class T, size_t n, class A> array<T, n> operator+=(array<T, n> &a, const A &b) { for (size_t i = 0; i < n; i++) a[i] += b[i]; return a; } template <class T, size_t n, class A> array<T, n> operator+(array<T, n> &a, const A &b) { return a += b; } namespace internal { template <size_t... I, class A, class B> auto tuple_add_impl(A &a, const B &b, const index_sequence<I...>) { ((get<I>(a) += get<I>(b)), ...); return a; } }; // namespace internal template <class... Ts, class Tp> tuple<Ts...> operator+=(tuple<Ts...> &a, const Tp &b) { return internal::tuple_add_impl(a, b, make_index_sequence<tuple_size_v<tuple<Ts...>>>{}); } template <class... Ts, class Tp> tuple<Ts...> operator+(tuple<Ts...> &a, const Tp &b) { return a += b; } template <class T, const size_t m> array<vc<T>, m> top(const vc<array<T, m>> &vt) { const size_t n = vt.size(); array<vc<T>, m> tv; tv.fill(vc<T>(n)); for (size_t i = 0; i < n; i++) for (size_t j = 0; j < m; j++) tv[j][i] = vt[i][j]; return tv; } template <class T, const size_t m> vc<array<T, m>> top(const array<vc<T>, m> &tv) { if (tv.empty()) return {}; const size_t n = tv[0].size(); vc<array<T, m>> vt(n); for (size_t j = 0; j < m; j++) { assert(tv[j].size() == n); for (size_t i = 0; i < n; i++) vt[i][j] = tv[j][i]; } return vt; } template <class T, class U> pair<vc<T>, vc<U>> top(const vc<pair<T, U>> &vt) { const size_t n = vt.size(); pair<vc<T>, vc<U>> tv; tv.first.resize(n), tv.second.resize(n); for (size_t i = 0; i < n; i++) tie(tv.first[i], tv.second[i]) = vt[i]; return tv; } template <class T, class U> vc<pair<T, U>> top(const pair<vc<T>, vc<U>> &tv) { const size_t n = tv.first.size(); assert(n == tv.second.size()); vc<pair<T, U>> vt(n); for (size_t i = 0; i < n; i++) vt[i] = make_pair(tv.first[i], tv.second[i]); return vt; } namespace internal { template <size_t... I, class V, class Tp> auto vt_to_tv_impl(V &tv, const Tp &t, index_sequence<I...>, size_t index) { ((get<I>(tv)[index] = get<I>(t)), ...); } template <size_t... I, class Tp> auto tv_to_vt_impl(const Tp &tv, index_sequence<I...>, size_t index) { return make_tuple(get<I>(tv)[index]...); } }; template <class... Ts> auto top(const vc<tuple<Ts...>> &vt) { const size_t n = vt.size(); tuple<vc<Ts>...> tv; apply([&](auto &...v) { ((v.resize(n)), ...); }, tv); for (size_t i = 0; i < n; i++) internal::vt_to_tv_impl(tv, vt[i], make_index_sequence<tuple_size_v<decltype(tv)>>{}, i); return tv; } template <class... Ts> auto top(const tuple<vc<Ts>...> &tv) { size_t n = get<0>(tv).size(); apply([&](auto &...v) { ((assert(v.size() == n)), ...); }, tv); vc<tuple<Ts...>> vt(n); for (size_t i = 0; i < n; i++) vt[i] = internal::tv_to_vt_impl(tv, index_sequence_for<Ts...>{}, i); return vt; } mt19937_64 mt; namespace internal { constexpr ll powmod32_constexpr(ll x, ll n, int m) { if (m == 1) return 0; uint _m = (uint)m; ull r = 1; ull y = safemod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool isprime32_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; ll d = n - 1; while (d % 2 == 0) d /= 2; constexpr ll bases[3] = {2, 7, 61}; for (ll a : bases) { ll t = d; ll y = powmod32_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) return false; } return true; } template <int n> constexpr bool isprime32 = isprime32_constexpr(n); struct barrett32 { uint m; ull im; explicit barrett32(uint m) : m(m), im((ull)(-1) / m + 1) {} uint umod() const { return m; } uint mul(uint a, uint b) const { ull z = a; z *= b; ull x = (ull)((u128(z)*im) >> 64); ull y = x * m; return (uint)(z - y + (z < y ? m : 0)); } }; } namespace internal { #define REF static_cast<mint &>(*this) #define CREF static_cast<const mint &>(*this) #define VAL *static_cast<const mint *>(this) template <class mint> struct modint_base { mint &operator+=(const mint &rhs) { mint &self = REF; self._v += rhs._v; if (self._v >= self.umod()) self._v -= self.umod(); return self; } mint &operator-=(const mint &rhs) { mint &self = REF; self._v -= rhs._v; if (self._v >= self.umod()) self._v += self.umod(); return self; } mint &operator/=(const mint &rhs) { mint &self = REF; return self = self * rhs.inv(); } mint &operator++() { mint &self = REF; self._v++; if (self._v == self.umod()) self._v = 0; return self; } mint &operator--() { mint &self = REF; if (self._v == 0) self._v = self.umod(); self._v--; return self; } mint operator++(int) { mint res = VAL; ++REF; return res; } mint operator--(int) { mint res = VAL; --REF; return res; } mint operator+() const { return VAL; } mint operator-() const { return mint() - VAL; } mint pow(ll n) const { assert(n >= 0); mint x = VAL, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return mint(lhs).eq(rhs); } friend bool operator!=(const mint &lhs, const mint &rhs) { return mint(lhs).neq(rhs); } private: bool eq(const mint &rhs) { return REF._v == rhs._v; } bool neq(const mint &rhs) { return REF._v != rhs._v; } }; } template <typename T, std::enable_if_t<std::is_base_of_v<internal::modint_base<T>, T>, int> = 0> void rd1(T &x) { ll a; fastio::rd1(a); x = a; } template <typename T, std::enable_if_t<std::is_base_of_v<internal::modint_base<T>, T>, int> = 0> void wt1(const T &x) { fastio::wt1(x.val()); } template <class T = ll> constexpr tuple<T, T, T> extgcd(T a, T b) { if (a == 0 && b == 0) return {0, 0, 0}; T x1 = 1, y1 = 0, z1 = a; T x2 = 0, y2 = 1, z2 = b; while (z2 != 0) { T q = z1 / z2; tie(x1, x2) = make_pair(x2, x1 - q * x2); tie(y1, y2) = make_pair(y2, y1 - q * y2); tie(z1, z2) = make_pair(z2, z1 - q * z2); } if (z1 < 0) x1 = -x1, y1 = -y1, z1 = -z1; return {z1, x1, y1}; } template <int m> struct static_modint : internal::modint_base<static_modint<m>> { using mint = static_modint; private: friend struct internal::modint_base<static_modint<m>>; uint _v; static constexpr uint umod() { return m; } static constexpr bool prime = internal::isprime32<m>; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, typename = enable_if_t<is_integral<T>::value>> static_modint(T v) { if constexpr (is_signed_v<T>) { ll x = (ll)(v % (ll)(umod())); if (x < 0) x += umod(); _v = (uint)x; } else { _v = (uint)(v % umod()); } } int val() const { return (int)_v; } mint& operator*=(const mint &rhs) { ull z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } mint inv() const { if (prime) { assert(_v != 0); return CREF.pow(umod() - 2); } else { auto [g, x, y] = extgcd<int>(_v, m); assert(g == 1); return x; } } }; template <int id> struct dynamic_modint : internal::modint_base<dynamic_modint<id>> { using mint = dynamic_modint; private: friend struct internal::modint_base<dynamic_modint<id>>; uint _v; static internal::barrett32 bt; static uint umod() { return bt.umod(); } public: static int mod() { return (int)(bt.umod()); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, typename = enable_if_t<is_integral<T>::value>> dynamic_modint(T v) { if constexpr (is_signed_v<T>) { ll x = (ll)(v % (ll)(umod())); if (x < 0) x += umod(); _v = (uint)x; } else { _v = (uint)(v % umod()); } } int val() const { return (int)_v; } mint& operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint inv() const { auto [g, x, y] = extgcd<int>(_v, mod()); assert(g == 1); return x; } }; template <int id> internal::barrett32 dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; template <class T> struct is_static_modint : false_type {}; template <int m> struct is_static_modint<static_modint<m>> : true_type {}; template <class T> inline constexpr bool is_static_modint_v = is_static_modint<T>::value; template <class T> struct is_dynamic_modint : false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : true_type {}; template <class T> inline constexpr bool is_dynamic_modint_v = is_dynamic_modint<T>::value; template <class T> inline constexpr bool is_modint_v = is_static_modint_v<T> || is_dynamic_modint_v<T>; template <typename, typename = void> struct has_mod : false_type {}; template <typename T> struct has_mod<T, void_t<decltype(declval<T>().mod)>> : true_type {}; template <class T> struct PowerTable { private: decltype(T::mod()) mod; T base; vc<T> pw; public: PowerTable() {} PowerTable(T base) : mod(T::mod()), base(base), pw(1, 1) {} void reserve(int n) { if (mod != T::mod()) { mod = T::mod(); pw = {1}; } int i = pw.size(); if (n < i) return; pw.resize(n + 1); for (; i <= n; i++) pw[i] = pw[i - 1] * base; } T pow(int n) { reserve(n); return pw[n]; } }; template <class T> struct Binomial { private: static decltype(T::mod()) mod; static vc<T> fac_, finv_, inv_; public: static void reserve(int n) { if (mod != T::mod()) { mod = T::mod(); fac_ = {1, 1}, finv_ = {1, 1}, inv_ = {0, 1}; } int i = fac_.size(); chmin(n, T::mod() - 1); if (n < i) return; fac_.resize(n + 1), finv_.resize(n + 1), inv_.resize(n + 1); for (; i <= n; i++) { fac_[i] = fac_[i - 1] * T::raw(i); inv_[i] = -inv_[T::mod() % i] * T::raw(T::mod() / i); finv_[i] = finv_[i - 1] * inv_[i]; } } static T inv(T n) { assert(n != 0); reserve(n.val()); return inv_[n.val()]; } static T C(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; reserve(n); return fac_[n] * finv_[k] * finv_[n - k]; } }; template <class T> decltype(T::mod()) Binomial<T>::mod{}; template <class T> vc<T> Binomial<T>::fac_{}; template <class T> vc<T> Binomial<T>::finv_{}; template <class T> vc<T> Binomial<T>::inv_{}; using mint = modint998244353; using bi = Binomial<mint>; template <int CHAR_NUM> struct Trie { private: vc<int> par; vc<array<int, CHAR_NUM>> chi; public: Trie() { par = {-1}; chi = {{}}; fill(ALL(chi[0]), -1); } void reserve(int len) { par.reserve(len), chi.reserve(len); } template <class I = ll> I num_of_vertices() const { return par.size(); } template <class I = ll> I parent(int v) const { assert(0 <= v && v < num_of_vertices()); return par[v]; } template <class I = ll> I child(int v, int c) const { assert(0 <= v && v < num_of_vertices()); assert(0 <= c && c < CHAR_NUM); return chi[v][c]; } template <class I = ll, class C> vc<I> insert(const vc<C> &s, int v = 0) { assert(0 <= v && v < num_of_vertices()); vc<I> res = {v}; res.reserve(s.size() + 1); fe(c : s) { assert(0 <= c && c < CHAR_NUM); if (chi[v][c] == -1) { chi[v][c] = num_of_vertices(); par.eb(v); chi.eb(); fill(ALL(chi.back()), -1); } v = chi[v][c]; res.eb(v); } return res; } }; template <class T> struct MyQueue { private: vc<T> d; int pos = 0; public: void reserve(int n) { d.reserve(n); } template <class I = ll> I size() const { return SZ<I>(d) - pos; } bool empty() const { return pos == SZ<int>(d); } void push(const T &t) { d.eb(t); } T front() const { return d[pos]; } T &front() { return d[pos]; } void clear() { d.clear(); pos = 0; } void pop() { pos++; } T operator[](int i) const { return d[pos + i]; } T &operator[](int i) { return d[pos + i]; } T at(int i) const { assert(0 <= i && i < size<int>()); return d[pos + i]; } T &at(int i) { assert(0 <= i && i < size<int>()); return d[pos + i]; } vc<T> content() { return {d.begin() + pos, d.end()}; } }; template <int CHAR_NUM> struct AhoCorasick { private: int n; vc<array<int, CHAR_NUM>> nxt; vc<int> fail; public: Trie<CHAR_NUM> trie; AhoCorasick() {} template <class C> AhoCorasick(const vvc<C> &strs) { fec(s : strs) trie.insert(s); n = trie.num_of_vertices(); fail.assign(n, -1); nxt.resize(n); MyQueue<int> que; que.push(0); while (!que.empty()) { int p = que.front(); que.pop(); repi(c, CHAR_NUM) { int v = trie.child(p, c); if (v != -1) { nxt[p][c] = v; fail[v] = p == 0 ? 0 : nxt[fail[p]][c]; que.push(v); } else { nxt[p][c] = p == 0 ? 0 : nxt[fail[p]][c]; } } } } template <class I = ll> I failure(int v) { assert(0 <= v && v < n); return fail[v]; } template <class I = ll> I next(int v, int c) { assert(0 <= v && v < n); assert(0 <= c && c < CHAR_NUM); return nxt[v][c]; } }; template <class T> struct CSR { protected: int n, m; vc<int> start; vc<T> elist; vc<int> eid_to_elistid; struct Row { using iterator = typename vc<T>::const_iterator; private: iterator begi, endi; public: Row(const iterator &begi, const iterator &endi) : begi(begi), endi(endi) {} inline iterator begin() const { return begi; } inline iterator end() const { return endi; } template <class I = ll> inline I size() const { return endi - begi; } inline bool empty() const { return size() == 0; } inline T operator[](int i) const { return *(begi + i); } inline T at(int i) const { assert(0 <= i && i < size()); return *(begi + i); } inline T front() const { assert(!empty()); return *begi; } inline T back() const { assert(!empty()); return *prev(endi); } }; public: CSR() {} template <class I> CSR(int n, const vc<pair<I, T>> &ies) : n(n), m(ies.size()), start(n, 0), elist(m), eid_to_elistid(m) { fec([ i, e ] : ies) { assert(0 <= i && i < n); start[i]++; } start = cumlsum(start); auto cnt = start; repi(j, m) { cauto &[i, e] = ies[j]; int &k = cnt[i]; elist[k] = e; eid_to_elistid[j] = k; k++; } } CSR(const vvc<T> &vv) : n(vv.size()), start(n + 1, 0) { m = 0; fec(row : vv) m += row.size(); elist.resize(m); eid_to_elistid.resize(m); int k = 0; for (int i = 0, j = 0; i < n; i++) { start[i] = k; fec(e : vv[i]) { elist[k] = e; eid_to_elistid[j++] = k; k++; } } start.back() = m; } Row operator[](int i) const { return Row(elist.begin() + start[i], elist.begin() + start[i + 1]); } Row at(int i) const { if (!(0 <= i && i < n)) return Row(elist.begin(), elist.begin()); return Row(elist.begin() + start[i], elist.begin() + start[i + 1]); } template <class I = ll> I size() const { return n; } const T &find_by_eid(int eid) const { assert(0 <= eid && eid < m); return elist[eid_to_elistid[eid]]; } }; template <class Cost> struct Edge { int from, to; Cost cost; int index; Edge() : from(-1), to(-1), index(-1) {} Edge(int s, int t, Cost c, int i = -1) : from(s), to(t), cost(c), index(i) {} operator int() const { return to; } bool operator<(const Edge &rhs) const { return cost < rhs.cost; } Edge rev() const { return Edge(to, from, cost, index); } }; template <bool is_directed, class Cost> struct Graph { using E = Edge<Cost>; protected: int n, m; CSR<E> g; public: Graph() {} template <class I> Graph(int n, const vc<pair<I, I>> &es, const Cost &dflt_cost = 1) : n(n), m(es.size()) { if constexpr (is_directed) { vc<pair<int, E>> edges(m); repi(i, m) { auto [u, v] = es[i]; assert(0 <= u && u < n); assert(0 <= v && v < n); edges[i] = {u, E(u, v, dflt_cost, i)}; } g = CSR<E>(n, edges); } else { vc<pair<int, E>> edges(2 * m); repi(i, m) { auto [u, v] = es[i]; assert(0 <= u && u < n); assert(0 <= v && v < n); edges[2 * i] = {u, E(u, v, dflt_cost, i)}; edges[2 * i + 1] = {v, E(v, u, dflt_cost, i)}; } g = CSR<E>(n, edges); } } template <class I> Graph(int n, const vc<tuple<I, I, Cost>> &es) : n(n), m(es.size()) { if constexpr (is_directed) { vc<pair<int, E>> edges(m); repi(i, m) { auto [u, v, w] = es[i]; assert(0 <= u && u < n); assert(0 <= v && v < n); edges[i] = {u, E(u, v, w, i)}; } g = CSR<E>(n, edges); } else { vc<pair<int, E>> edges(2 * m); repi(i, m) { auto [u, v, w] = es[i]; assert(0 <= u && u < n); assert(0 <= v && v < n); edges[2 * i] = {u, E(u, v, w, i)}; edges[2 * i + 1] = {v, E(v, u, w, i)}; } g = CSR<E>(n, edges); } } template <class I = ll> I size() const { return n; } auto out_edges(int v) const { return g[v]; } E get_edge(int eid) const { if constexpr (is_directed) return g.find_by_eid(eid); else { E e = g.find_by_eid(eid * 2); return e.from > e.to ? e.rev() : e; } } }; template <class Cost> using GraphDirected = Graph<true, Cost>; template <class Cost> using GraphUndirected = Graph<false, Cost>; template <class Cost, bool need_dist = true> struct RootedTree { using E = Edge<Cost>; protected: int n, root_; vc<E> par; // par[v] は v から親に向かう辺 CSR<E> chi; vc<int> bfs_ordered_eid; vc<int> dep; vc<Cost> dis; vc<int> siz; void calc_siz() { siz.assign(n, 1); repi(j, n - 2, -1, -1) { const E &e = get_edge(bfs_ordered_eid[j]); siz[e.from] += siz[e.to]; } } public: RootedTree() {} template <class I> RootedTree(const vc<I> &p, const Cost &dflt_cost = 1) : n(p.size()) { par.resize(n); root_ = -1; vc<pair<int, E>> edges(n - 1); for (int i = 0, j = 0; i < n; i++) { if (p[i] < 0 || p[i] == i) { assert(root_ == -1 && "There are more than two roots"); par[i] = E(i, -1, dflt_cost, -1); root_ = i; } else { assert(j < n - 1 && "There is no root"); par[i] = E(i, p[i], dflt_cost, j); edges[j] = {p[i], E(p[i], i, dflt_cost, j)}; j++; } } chi = CSR<E>(n, edges); bfs_ordered_eid.reserve(n - 1); MyQueue<int> que; que.push(root_); dep.assign(n, 0); if constexpr (need_dist) dis.assign(n, 0); while (!que.empty()) { int v = que.front(); que.pop(); fec(e : chi[v]) { bfs_ordered_eid.eb(e.index); dep[e.to] = dep[e.from] + 1; if constexpr (need_dist) dis[e.to] = dis[e.from] + e.cost; que.push(e.to); } } calc_siz(); } template <bool is_directed> RootedTree(const Graph<is_directed, Cost> &g, int root) : n(g.size()), root_(root) { par.resize(n); par[root] = E(root, -1, {}, -1); vc<pair<int, E>> edges(n - 1); MyQueue<int> que; que.push(root); dep.assign(n, 0); if constexpr (need_dist) dis.assign(n, 0); while (!que.empty()) { int v = que.front(); que.pop(); fec(e : g.out_edges(v)) { if (par[e.from] == e.to) continue; par[e.to] = e.rev(); edges[e.index] = {e.from, e}; bfs_ordered_eid.eb(e.index); dep[e.to] = dep[e.from] + 1; if constexpr (need_dist) dis[e.to] = dis[e.from] + e.cost; que.push(e.to); } } chi = CSR<E>(n, edges); calc_siz(); } template <class I> RootedTree(int n, const vc<pair<I, I>> &es, int root) : RootedTree(GraphUndirected<Cost>(n, es), root) {} template <class I> RootedTree(int n, const vc<tuple<I, I, Cost>> &es, int root) : RootedTree(GraphUndirected<Cost>(n, es), root) {} template <class I = ll> I size() const { return n; } const E &get_edge(int eid) const { return chi.find_by_eid(eid); } vc<E> edges() const { vc<E> res(n - 1); repi(i, n - 1) res[i] = get_edge(i); return res; } vc<E> bfs_ordered_edges() const { vc<E> res(n - 1); repi(i, n - 1) res[i] = get_edge(bfs_ordered_eid[i]); return res; } }; void init() { oj(mt.seed(random_device()())); } void main2() { STR(S_); vl S = stov(S_, 'A'); LL(M); VEC(string, M, T_); vvl T(M); rep(i, M) T.at(i) = stov(T_.at(i), 'A'); AhoCorasick<26> aho(T); ll N = aho.trie.num_of_vertices(); rep(i, N) dump(i, vtos(aho.trie.to_string(i), 'A')); vl cnt(N, 0); ll v = 0; fec(c : S) { v = aho.next(v, c); cnt.at(v)++; dump(v); } dump(cnt | cp::index()); RootedTree<bool, false> G(GEN_VEC(N, i, aho.failure(i))); fec(e : reversed(G.bfs_ordered_edges())) { cnt.at(e.from) += cnt.at(e.to); } ll ans = 0; fec(t : T) { ll v = 0; fec(c : t) v = aho.trie.child(v, c); dump(vtos(t, 'A'), cnt.at(v)); ans += cnt.at(v); } PRINT(ans); } void test() { } template <auto init, auto main2, auto test> struct Main { Main() { cauto CERR = [](string val, string color) { string s = "\033[" + color + "m" + val + "\033[m"; /* コードテストで確認する際にコメントアウトを外す cerr << val; //*/ }; CERR("\n[FAST_IO]\n\n", "32"); cout << fixed << setprecision(20); init(); CERR("\n[SINGLE_TESTCASE]\n\n", "36"); main2(); } }; Main<init, main2, test> main_dummy; } int main() {}