結果

問題 No.515 典型LCP
ユーザー 前田悠真
提出日時 2025-08-14 19:02:05
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 10,077 bytes
コンパイル時間 292 ms
コンパイル使用メモリ 82,124 KB
実行使用メモリ 283,020 KB
最終ジャッジ日時 2025-08-14 19:02:10
合計ジャッジ時間 5,449 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample -- * 2
other TLE * 1 -- * 14
権限があれば一括ダウンロードができます

ソースコード

diff #

import functools
import typing


def _sa_naive(s: typing.List[int]) -> typing.List[int]:
    sa = list(range(len(s)))
    return sorted(sa, key=lambda i: s[i:])


def _sa_doubling(s: typing.List[int]) -> typing.List[int]:
    n = len(s)
    sa = list(range(n))
    rnk = s.copy()
    tmp = [0] * n
    k = 1
    while k < n:
        def cmp(x: int, y: int) -> int:
            if rnk[x] != rnk[y]:
                return rnk[x] - rnk[y]
            rx = rnk[x + k] if x + k < n else -1
            ry = rnk[y + k] if y + k < n else -1
            return rx - ry
        sa.sort(key=functools.cmp_to_key(cmp))
        tmp[sa[0]] = 0
        for i in range(1, n):
            tmp[sa[i]] = tmp[sa[i - 1]] + (1 if cmp(sa[i - 1], sa[i]) else 0)
        tmp, rnk = rnk, tmp
        k *= 2
    return sa


def _sa_is(s: typing.List[int], upper: int) -> typing.List[int]:
    threshold_naive = 10
    threshold_doubling = 40

    n = len(s)

    if n == 0:
        return []
    if n == 1:
        return [0]
    if n == 2:
        if s[0] < s[1]:
            return [0, 1]
        else:
            return [1, 0]

    if n < threshold_naive:
        return _sa_naive(s)
    if n < threshold_doubling:
        return _sa_doubling(s)

    sa = [0] * n
    ls = [False] * n
    for i in range(n - 2, -1, -1):
        if s[i] == s[i + 1]:
            ls[i] = ls[i + 1]
        else:
            ls[i] = s[i] < s[i + 1]

    sum_l = [0] * (upper + 1)
    sum_s = [0] * (upper + 1)
    for i in range(n):
        if not ls[i]:
            sum_s[s[i]] += 1
        else:
            sum_l[s[i] + 1] += 1
    for i in range(upper + 1):
        sum_s[i] += sum_l[i]
        if i < upper:
            sum_l[i + 1] += sum_s[i]

    def induce(lms: typing.List[int]) -> None:
        nonlocal sa
        sa = [-1] * n

        buf = sum_s.copy()
        for d in lms:
            if d == n:
                continue
            sa[buf[s[d]]] = d
            buf[s[d]] += 1

        buf = sum_l.copy()
        sa[buf[s[n - 1]]] = n - 1
        buf[s[n - 1]] += 1
        for i in range(n):
            v = sa[i]
            if v >= 1 and not ls[v - 1]:
                sa[buf[s[v - 1]]] = v - 1
                buf[s[v - 1]] += 1

        buf = sum_l.copy()
        for i in range(n - 1, -1, -1):
            v = sa[i]
            if v >= 1 and ls[v - 1]:
                buf[s[v - 1] + 1] -= 1
                sa[buf[s[v - 1] + 1]] = v - 1

    lms_map = [-1] * (n + 1)
    m = 0
    for i in range(1, n):
        if not ls[i - 1] and ls[i]:
            lms_map[i] = m
            m += 1
    lms = []
    for i in range(1, n):
        if not ls[i - 1] and ls[i]:
            lms.append(i)

    induce(lms)

    if m:
        sorted_lms = []
        for v in sa:
            if lms_map[v] != -1:
                sorted_lms.append(v)
        rec_s = [0] * m
        rec_upper = 0
        rec_s[lms_map[sorted_lms[0]]] = 0
        for i in range(1, m):
            left = sorted_lms[i - 1]
            right = sorted_lms[i]
            if lms_map[left] + 1 < m:
                end_l = lms[lms_map[left] + 1]
            else:
                end_l = n
            if lms_map[right] + 1 < m:
                end_r = lms[lms_map[right] + 1]
            else:
                end_r = n

            same = True
            if end_l - left != end_r - right:
                same = False
            else:
                while left < end_l:
                    if s[left] != s[right]:
                        break
                    left += 1
                    right += 1
                if left == n or s[left] != s[right]:
                    same = False

            if not same:
                rec_upper += 1
            rec_s[lms_map[sorted_lms[i]]] = rec_upper

        rec_sa = _sa_is(rec_s, rec_upper)

        for i in range(m):
            sorted_lms[i] = lms[rec_sa[i]]
        induce(sorted_lms)

    return sa


def suffix_array(s: typing.Union[str, typing.List[int]],
                 upper: typing.Optional[int] = None) -> typing.List[int]:
    '''
    SA-IS, linear-time suffix array construction
    Reference:
    G. Nong, S. Zhang, and W. H. Chan,
    Two Efficient Algorithms for Linear Time Suffix Array Construction
    '''

    if isinstance(s, str):
        return _sa_is([ord(c) for c in s], 255)
    elif upper is None:
        n = len(s)
        idx = list(range(n))

        def cmp(left: int, right: int) -> int:
            return typing.cast(int, s[left]) - typing.cast(int, s[right])

        idx.sort(key=functools.cmp_to_key(cmp))
        s2 = [0] * n
        now = 0
        for i in range(n):
            if i and s[idx[i - 1]] != s[idx[i]]:
                now += 1
            s2[idx[i]] = now
        return _sa_is(s2, now)
    else:
        assert 0 <= upper
        for d in s:
            assert 0 <= d <= upper

        return _sa_is(s, upper)


def lcp_array(s: typing.Union[str, typing.List[int]],
              sa: typing.List[int]) -> typing.List[int]:
    '''
    Longest-Common-Prefix computation
    Reference:
    T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
    Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
    Applications
    '''

    if isinstance(s, str):
        s = [ord(c) for c in s]

    n = len(s)
    assert n >= 1

    rnk = [0] * n
    for i in range(n):
        rnk[sa[i]] = i

    lcp = [0] * (n - 1)
    h = 0
    for i in range(n):
        if h > 0:
            h -= 1
        if rnk[i] == 0:
            continue
        j = sa[rnk[i] - 1]
        while j + h < n and i + h < n:
            if s[j + h] != s[i + h]:
                break
            h += 1
        lcp[rnk[i] - 1] = h

    return lcp

import typing

def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1

    return x


def _bsf(n: int) -> int:
    x = 0
    while n % 2 == 0:
        x += 1
        n //= 2

    return x

class SegTree:
    def __init__(self,
                 op: typing.Callable[[typing.Any, typing.Any], typing.Any],
                 e: typing.Any,
                 v: typing.Union[int, typing.List[typing.Any]]) -> None:
        self._op = op
        self._e = e

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = _ceil_pow2(self._n)
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)

        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        return self._d[p + self._size]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n
        sml = self._e
        smr = self._e
        left += self._size
        right += self._size

        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def max_right(self, left: int,
                  f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert f(self._e)

        if left == self._n:
            return self._n

        left += self._size
        sm = self._e

        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not f(self._op(sm, self._d[left])):
                while left < self._size:
                    left *= 2
                    if f(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int,
                 f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= right <= self._n
        assert f(self._e)

        if right == 0:
            return 0

        right += self._size
        sm = self._e

        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not f(self._op(self._d[right], sm)):
                while right < self._size:
                    right = 2 * right + 1
                    if f(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])

n = int(input())
F = [0]*n
F_ = {}
A = ''
for i in range(n):
  a = input()
  A += a
  if i+1<n: 
      F[i+1] += F[i]+len(a)
  F_[F[i]] = i

M, x, d = map(int, input().split())
I = [0]*M
J = [0]*M
for k in range(M):
  I[k] = (x // (n - 1)) + 1
  J[k] = (x % (n - 1)) + 1
  if (I[k] > J[k]):
    I[k], J[k] = J[k], I[k]
  else:
    J[k] = J[k] + 1
  x = (x + d) % (n * (n - 1))

# from atcoder.string import suffix_array, lcp_array
SA = suffix_array(A)
LCP = lcp_array(A, SA)+[0]

m = len(A)
LCP_ = [0]*m
SA_ = [0]*m
for i, sa in enumerate(SA):
    LCP_[i] = LCP[sa]
    SA_[sa] = i

seg = SegTree(
  op = min,
  e = 1<<60,
  v = LCP,
)

# for sa in SA:
#     print(A[sa:])

# print(LCP)
# print(LCP_)
# print(I, J)
ans = 0
# print(F)
for i, j in zip(I, J):
    i, j = F[i-1], F[j-1]
    i, j = SA_[i], SA_[j]
    # print(i, j)
    ans += seg.prod(min(i, j), max(i, j))

print(ans)
0