結果

問題 No.3236 累乗数大好きbot
ユーザー こめだわら
提出日時 2025-08-15 22:08:59
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,912 ms / 4,000 ms
コード長 9,791 bytes
コンパイル時間 3,816 ms
コンパイル使用メモリ 301,384 KB
実行使用メモリ 7,716 KB
最終ジャッジ日時 2025-08-15 22:10:20
合計ジャッジ時間 61,644 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using ull = unsigned long long;

#define rep(i,n) for(ll i=0;i<n;++i)
#define all(a) (a).begin(),(a).end()
ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }
ll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
template<class T> T div_floor(T a, T b) { return a / b - ((a ^ b) < 0 && a % b); }
template<class T> T div_ceil(T a, T b) { return a / b + ((a ^ b) > 0 && a % b); }
template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }

namespace noya2{

namespace fast_factorize {

/*
    See : https://judge.yosupo.jp/submission/189742
*/

// ---- gcd ----

uint64_t gcd_stein_impl( uint64_t x, uint64_t y ) {
    if( x == y ) { return x; }
    const uint64_t a = y - x;
    const uint64_t b = x - y;
    const int n = __builtin_ctzll( b );
    const uint64_t s = x < y ? a : b;
    const uint64_t t = x < y ? x : y;
    return gcd_stein_impl( s >> n, t );
}

uint64_t gcd_stein( uint64_t x, uint64_t y ) {
    if( x == 0 ) { return y; }
    if( y == 0 ) { return x; }
    const int n = __builtin_ctzll( x );
    const int m = __builtin_ctzll( y );
    return gcd_stein_impl( x >> n, y >> m ) << ( n < m ? n : m );
}

// ---- is_prime ----

uint64_t mod_pow( uint64_t x, uint64_t y, uint64_t mod ) {
    uint64_t ret = 1;
    uint64_t acc = x;
    for( ; y; y >>= 1 ) {
        if( y & 1 ) {
            ret = __uint128_t(ret) * acc % mod;
        }
        acc = __uint128_t(acc) * acc % mod;
    }
    return ret;
}

bool miller_rabin( uint64_t n, const std::initializer_list<uint64_t>& as ) {
    return std::all_of( as.begin(), as.end(), [n]( uint64_t a ) {
        if( n <= a ) { return true; }

        int e = __builtin_ctzll( n - 1 );
        uint64_t z = mod_pow( a, ( n - 1 ) >> e, n );
        if( z == 1 || z == n - 1 ) { return true; }

        while( --e ) {
            z = __uint128_t(z) * z % n;
            if( z == 1 ) { return false; }
            if( z == n - 1 ) { return true; }
        }

        return false;
    });
}

bool is_prime( uint64_t n ) {
    if( n == 2 ) { return true; }
    if( n % 2 == 0 ) { return false; }
    if( n < 4759123141 ) { return miller_rabin( n, { 2, 7, 61 } ); }
    return miller_rabin( n, { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 } );
}

// ---- Montgomery ----

class Montgomery {
    uint64_t mod;
    uint64_t R;
public:
    Montgomery( uint64_t n ) : mod(n), R(n) {
       for( size_t i = 0; i < 5; ++i ) {
          R *= 2 - mod * R;
       }
    }

    uint64_t fma( uint64_t a, uint64_t b, uint64_t c ) const {
        const __uint128_t d = __uint128_t(a) * b;
        const uint64_t    e = c + mod + ( d >> 64 );
        const uint64_t    f = uint64_t(d) * R;
        const uint64_t    g = ( __uint128_t(f) * mod ) >> 64;
        return e - g;
    }

    uint64_t mul( uint64_t a, uint64_t b ) const {
        return fma( a, b, 0 );
    }
};

// ---- Pollard's rho algorithm ----

uint64_t pollard_rho( uint64_t n ) {
    if( n % 2 == 0 ) { return 2; }
    const Montgomery m( n );

    constexpr uint64_t C1 = 1;
    constexpr uint64_t C2 = 2;
    constexpr uint64_t M = 512;

    uint64_t Z1 = 1;
    uint64_t Z2 = 2;
retry:
    uint64_t z1 = Z1;
    uint64_t z2 = Z2;
    for( size_t k = M; ; k *= 2 ) {
        const uint64_t x1 = z1 + n;
        const uint64_t x2 = z2 + n;
        for( size_t j = 0; j < k; j += M ) {
            const uint64_t y1 = z1;
            const uint64_t y2 = z2;

            uint64_t q1 = 1;
            uint64_t q2 = 2;
            z1 = m.fma( z1, z1, C1 );
            z2 = m.fma( z2, z2, C2 );
            for( size_t i = 0; i < M; ++i ) {
                const uint64_t t1 = x1 - z1;
                const uint64_t t2 = x2 - z2;
                z1 = m.fma( z1, z1, C1 );
                z2 = m.fma( z2, z2, C2 );
                q1 = m.mul( q1, t1 );
                q2 = m.mul( q2, t2 );
            }
            q1 = m.mul( q1, x1 - z1 );
            q2 = m.mul( q2, x2 - z2 );

            const uint64_t q3 = m.mul( q1, q2 );
            const uint64_t g3 = gcd_stein( n, q3 );
            if( g3 == 1 ) { continue; }
            if( g3 != n ) { return g3; }

            const uint64_t g1 = gcd_stein( n, q1 );
            const uint64_t g2 = gcd_stein( n, q2 );

            const uint64_t C = g1 != 1 ? C1 : C2;
            const uint64_t x = g1 != 1 ? x1 : x2;
            uint64_t       z = g1 != 1 ? y1 : y2;
            uint64_t       g = g1 != 1 ? g1 : g2;

            if( g == n ) {
                do {
                    z = m.fma( z, z, C );
                    g = gcd_stein( n, x - z );
                } while( g == 1 );
            }
            if( g != n ) {
                return g;
            }

            Z1 += 2;
            Z2 += 2;
            goto retry;
        }
    }
}

void factorize_impl( uint64_t n, std::vector<uint64_t>& ret ) {
    if( n <= 1 ) { return; }
    if( is_prime( n ) ) { ret.push_back( n ); return; }

    const uint64_t p = pollard_rho( n );

    factorize_impl( p, ret );
    factorize_impl( n / p, ret );
}

std::vector<uint64_t> factorize( uint64_t n ) {
    std::vector<uint64_t> ret;
    factorize_impl( n, ret );
    std::sort( ret.begin(), ret.end() );
    return ret;
}

} // namespace fast_factorize

std::vector<std::pair<long long, int>> factorize(long long n){ // 素因数分解
    std::vector<std::pair<long long, int>> ans;
    auto ps = fast_factorize::factorize(n);
    int sz = ps.size();
    for (int l = 0, r = 0; l < sz; l = r){
        while (r < sz && ps[l] == ps[r]) r++;
        ans.emplace_back(ps[l], r-l);
    }
    return ans;
}

std::vector<long long> divisors(long long n){ // 約数列挙
    auto ps = fast_factorize::factorize(n);
    int sz = ps.size();
    std::vector<long long> ans = {1};
    for (int l = 0, r = 0; l < sz; l = r){
        while (r < sz && ps[l] == ps[r]) r++;
        int e = r - l;
        int len = ans.size();
        ans.reserve(len*(e+1));
        long long mul = ps[l];
        while (true){
            for (int i = 0; i < len; i++){
                ans.emplace_back(ans[i]*mul);
            }
            if (--e == 0) break;
            mul *= ps[l];
        }
    }
    return ans;
}

std::vector<long long> divisors(const std::vector<std::pair<long long, int>> &pes){ // 素因数から約数を列挙
    std::vector<long long> ans = {1};
    for (auto [p, e] : pes){
        int len = ans.size();
        ans.reserve(len*(e+1));
        long long mul = p;
        while (true){
            for (int i = 0; i < len; i++){
                ans.emplace_back(ans[i]*mul);
            }
            if (--e == 0) break;
            mul *= p;
        }
    }
    return ans;
}

bool is_prime(long long n){ // 素数判定
    if (n <= 1) return false;
    return fast_factorize::is_prime(n);
}

struct Sieve {
    vector<int> primes, factor, mu;
    Sieve (int N = 1024){
        build(N);
    }
    void request(int N){
        int len = n_max();
        if (len >= N) return ;
        while (len < N) len <<= 1;
        build(len);
    }
    int n_max(){ return factor.size()-1; }
  private:
    void build (int N){
        primes.clear();
        factor.resize(N+1); fill(factor.begin(),factor.end(),0);
        mu.resize(N+1); fill(mu.begin(),mu.end(),1);

        for(int n = 2; n <= N; n++) {
            if (factor[n] == 0){
                primes.push_back(n);
                factor[n] = n;
                mu[n] = -1;
            }
            for (int p : primes){
                if(n * p > N || p > factor[n]) break;
                factor[n * p] = p;
                mu[n * p] = p == factor[n] ? 0 : -mu[n];
            }
        }
    }
} sieve;

int mobius_sieve(int n){ // メビウス関数
    assert(1 <= n);
    if (n>sieve.n_max())sieve.request(n);
    return sieve.mu[n];
}
bool is_prime_sieve(int n){
    if (n <= 2) return n == 2;
    if (n>sieve.n_max())sieve.request(n);
    return sieve.factor[n] == n;
}

vector<pair<int,int>> prime_factorization_sieve(int n){ // 素因数分解
    assert(1 <= n);
    if (n>sieve.n_max())sieve.request(n);
    vector<int> facts;
    while (n > 1){
        int p = sieve.factor[n];
        facts.push_back(p);
        n /= p;
    }
    vector<pair<int,int>> pes;
    int siz = facts.size();
    for (int l = 0, r = 0; l < siz; l = r){
        while (r < siz && facts[r] == facts[l]) r++;
        pes.emplace_back(facts[l],r-l);
    }
    return pes;
}

vector<int> divisor_enumeration_sieve(int n){ // 約数列挙
    auto pes = prime_factorization_sieve(n);
    vector<int> divs = {1};
    for (auto [p, e] : pes){
        vector<int> nxt; nxt.reserve(divs.size() * (e+1));
        for (auto x : divs){
            for (int tt = 0; tt <= e; tt++){
                nxt.push_back(x);
                x *= p;
            }
        }
        swap(divs,nxt);
    }
    return divs;
}

} // namespace noya2
using namespace noya2;


void solve() {
    ll Q;
    cin>>Q;
    rep(_,Q){
        ll N;
        cin>>N;
        if (is_prime(N)){
            cout<<1<<endl;
            continue;
        }
        ll s=sqrtl(N);
        if (s*s==N){
            ll g=0;
            for (auto [p,e]:factorize(s)){
                g=gcd(g,e);
            }
            g*=2;
            cout<<g<<endl;
            continue;
        }
        ll g=0;
        for (auto [p,e]:factorize(N)){
            g=gcd(g,e);
        }
        cout<<g<<endl;
    }
    return;
}


int main() {
    ll T=1;
    while (T--){
        solve();
    }
    return 0;
}
0