結果
| 問題 | 
                            No.945 YKC饅頭
                             | 
                    
| コンテスト | |
| ユーザー | 
                             ntuda
                         | 
                    
| 提出日時 | 2025-08-15 23:13:13 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 857 ms / 2,000 ms | 
| コード長 | 41,167 bytes | 
| コンパイル時間 | 310 ms | 
| コンパイル使用メモリ | 82,420 KB | 
| 実行使用メモリ | 90,740 KB | 
| 最終ジャッジ日時 | 2025-08-15 23:13:42 | 
| 合計ジャッジ時間 | 26,760 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge4 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 74 | 
ソースコード
import sys
import traceback
from bisect import bisect_left, bisect_right, insort
from collections.abc import MutableSequence, Sequence
from functools import reduce
from itertools import chain, repeat, starmap
from math import log
from operator import add, eq, ge, gt, iadd, le, lt, ne
from reprlib import recursive_repr
from textwrap import dedent
class SortedList(MutableSequence):
    DEFAULT_LOAD_FACTOR = 1000
    def __init__(self, iterable=None, key=None):
        assert key is None
        self._len = 0
        self._load = self.DEFAULT_LOAD_FACTOR
        self._lists = []
        self._maxes = []
        self._index = []
        self._offset = 0
        if iterable is not None:
            self._update(iterable)
    def __new__(cls, iterable=None, key=None):
        # pylint: disable=unused-argument
        if key is None:
            return object.__new__(cls)
        else:
            if cls is SortedList:
                return object.__new__(SortedKeyList)
            else:
                raise TypeError('inherit SortedKeyList for key argument')
    @property
    def key(self):  # pylint: disable=useless-return
        return None
    def _reset(self, load):
        values = reduce(iadd, self._lists, [])
        self._clear()
        self._load = load
        self._update(values)
    def clear(self):
        self._len = 0
        del self._lists[:]
        del self._maxes[:]
        del self._index[:]
        self._offset = 0
    _clear = clear
    def add(self, value):
        _lists = self._lists
        _maxes = self._maxes
        if _maxes:
            pos = bisect_right(_maxes, value)
            if pos == len(_maxes):
                pos -= 1
                _lists[pos].append(value)
                _maxes[pos] = value
            else:
                insort(_lists[pos], value)
            self._expand(pos)
        else:
            _lists.append([value])
            _maxes.append(value)
        self._len += 1
    def _expand(self, pos):
        _load = self._load
        _lists = self._lists
        _index = self._index
        if len(_lists[pos]) > (_load << 1):
            _maxes = self._maxes
            _lists_pos = _lists[pos]
            half = _lists_pos[_load:]
            del _lists_pos[_load:]
            _maxes[pos] = _lists_pos[-1]
            _lists.insert(pos + 1, half)
            _maxes.insert(pos + 1, half[-1])
            del _index[:]
        else:
            if _index:
                child = self._offset + pos
                while child:
                    _index[child] += 1
                    child = (child - 1) >> 1
                _index[0] += 1
    def update(self, iterable):
        _lists = self._lists
        _maxes = self._maxes
        values = sorted(iterable)
        if _maxes:
            if len(values) * 4 >= self._len:
                _lists.append(values)
                values = reduce(iadd, _lists, [])
                values.sort()
                self._clear()
            else:
                _add = self.add
                for val in values:
                    _add(val)
                return
        _load = self._load
        _lists.extend(
            values[pos : (pos + _load)] for pos in range(0, len(values), _load)
        )
        _maxes.extend(sublist[-1] for sublist in _lists)
        self._len = len(values)
        del self._index[:]
    _update = update
    def __contains__(self, value):
        _maxes = self._maxes
        if not _maxes:
            return False
        pos = bisect_left(_maxes, value)
        if pos == len(_maxes):
            return False
        _lists = self._lists
        idx = bisect_left(_lists[pos], value)
        return _lists[pos][idx] == value
    def discard(self, value):
        _maxes = self._maxes
        if not _maxes:
            return
        pos = bisect_left(_maxes, value)
        if pos == len(_maxes):
            return
        _lists = self._lists
        idx = bisect_left(_lists[pos], value)
        if _lists[pos][idx] == value:
            self._delete(pos, idx)
    def remove(self, value):
        _maxes = self._maxes
        if not _maxes:
            raise ValueError(f'{value!r} not in list')
        pos = bisect_left(_maxes, value)
        if pos == len(_maxes):
            raise ValueError(f'{value!r} not in list')
        _lists = self._lists
        idx = bisect_left(_lists[pos], value)
        if _lists[pos][idx] == value:
            self._delete(pos, idx)
        else:
            raise ValueError(f'{value!r} not in list')
    def _delete(self, pos, idx):
        _lists = self._lists
        _maxes = self._maxes
        _index = self._index
        _lists_pos = _lists[pos]
        del _lists_pos[idx]
        self._len -= 1
        len_lists_pos = len(_lists_pos)
        if len_lists_pos > (self._load >> 1):
            _maxes[pos] = _lists_pos[-1]
            if _index:
                child = self._offset + pos
                while child > 0:
                    _index[child] -= 1
                    child = (child - 1) >> 1
                _index[0] -= 1
        elif len(_lists) > 1:
            if not pos:
                pos += 1
            prev = pos - 1
            _lists[prev].extend(_lists[pos])
            _maxes[prev] = _lists[prev][-1]
            del _lists[pos]
            del _maxes[pos]
            del _index[:]
            self._expand(prev)
        elif len_lists_pos:
            _maxes[pos] = _lists_pos[-1]
        else:
            del _lists[pos]
            del _maxes[pos]
            del _index[:]
    def _loc(self, pos, idx):
        if not pos:
            return idx
        _index = self._index
        if not _index:
            self._build_index()
        total = 0
        # Increment pos to point in the index to len(self._lists[pos]).
        pos += self._offset
        # Iterate until reaching the root of the index tree at pos = 0.
        while pos:
            # Right-child nodes are at odd indices. At such indices
            # account the total below the left child node.
            if not pos & 1:
                total += _index[pos - 1]
            # Advance pos to the parent node.
            pos = (pos - 1) >> 1
        return total + idx
    def _pos(self, idx):
        if idx < 0:
            last_len = len(self._lists[-1])
            if (-idx) <= last_len:
                return len(self._lists) - 1, last_len + idx
            idx += self._len
            if idx < 0:
                raise IndexError('list index out of range')
        elif idx >= self._len:
            raise IndexError('list index out of range')
        if idx < len(self._lists[0]):
            return 0, idx
        _index = self._index
        if not _index:
            self._build_index()
        pos = 0
        child = 1
        len_index = len(_index)
        while child < len_index:
            index_child = _index[child]
            if idx < index_child:
                pos = child
            else:
                idx -= index_child
                pos = child + 1
            child = (pos << 1) + 1
        return (pos - self._offset, idx)
    def _build_index(self):
        row0 = list(map(len, self._lists))
        if len(row0) == 1:
            self._index[:] = row0
            self._offset = 0
            return
        head = iter(row0)
        tail = iter(head)
        row1 = list(starmap(add, zip(head, tail)))
        if len(row0) & 1:
            row1.append(row0[-1])
        if len(row1) == 1:
            self._index[:] = row1 + row0
            self._offset = 1
            return
        size = 2 ** (int(log(len(row1) - 1, 2)) + 1)
        row1.extend(repeat(0, size - len(row1)))
        tree = [row0, row1]
        while len(tree[-1]) > 1:
            head = iter(tree[-1])
            tail = iter(head)
            row = list(starmap(add, zip(head, tail)))
            tree.append(row)
        reduce(iadd, reversed(tree), self._index)
        self._offset = size * 2 - 1
    def __delitem__(self, index):
        if isinstance(index, slice):
            start, stop, step = index.indices(self._len)
            if step == 1 and start < stop:
                if start == 0 and stop == self._len:
                    return self._clear()
                elif self._len <= 8 * (stop - start):
                    values = self._getitem(slice(None, start))
                    if stop < self._len:
                        values += self._getitem(slice(stop, None))
                    self._clear()
                    return self._update(values)
            indices = range(start, stop, step)
            # Delete items from greatest index to least so
            # that the indices remain valid throughout iteration.
            if step > 0:
                indices = reversed(indices)
            _pos, _delete = self._pos, self._delete
            for index in indices:
                pos, idx = _pos(index)
                _delete(pos, idx)
        else:
            pos, idx = self._pos(index)
            self._delete(pos, idx)
    def __getitem__(self, index):
        _lists = self._lists
        if isinstance(index, slice):
            start, stop, step = index.indices(self._len)
            if step == 1 and start < stop:
                # Whole slice optimization: start to stop slices the whole
                # sorted list.
                if start == 0 and stop == self._len:
                    return reduce(iadd, self._lists, [])
                start_pos, start_idx = self._pos(start)
                start_list = _lists[start_pos]
                stop_idx = start_idx + stop - start
                # Small slice optimization: start index and stop index are
                # within the start list.
                if len(start_list) >= stop_idx:
                    return start_list[start_idx:stop_idx]
                if stop == self._len:
                    stop_pos = len(_lists) - 1
                    stop_idx = len(_lists[stop_pos])
                else:
                    stop_pos, stop_idx = self._pos(stop)
                prefix = _lists[start_pos][start_idx:]
                middle = _lists[(start_pos + 1) : stop_pos]
                result = reduce(iadd, middle, prefix)
                result += _lists[stop_pos][:stop_idx]
                return result
            if step == -1 and start > stop:
                result = self._getitem(slice(stop + 1, start + 1))
                result.reverse()
                return result
            # Return a list because a negative step could
            # reverse the order of the items and this could
            # be the desired behavior.
            indices = range(start, stop, step)
            return list(self._getitem(index) for index in indices)
        else:
            if self._len:
                if index == 0:
                    return _lists[0][0]
                elif index == -1:
                    return _lists[-1][-1]
            else:
                raise IndexError('list index out of range')
            if 0 <= index < len(_lists[0]):
                return _lists[0][index]
            len_last = len(_lists[-1])
            if -len_last < index < 0:
                return _lists[-1][len_last + index]
            pos, idx = self._pos(index)
            return _lists[pos][idx]
    _getitem = __getitem__
    def __setitem__(self, index, value):
        message = 'use ``del sl[index]`` and ``sl.add(value)`` instead'
        raise NotImplementedError(message)
    def __iter__(self):
        return chain.from_iterable(self._lists)
    def __reversed__(self):
        return chain.from_iterable(map(reversed, reversed(self._lists)))
    def reverse(self):
        raise NotImplementedError('use ``reversed(sl)`` instead')
    def islice(self, start=None, stop=None, reverse=False):
        _len = self._len
        if not _len:
            return iter(())
        start, stop, _ = slice(start, stop).indices(self._len)
        if start >= stop:
            return iter(())
        _pos = self._pos
        min_pos, min_idx = _pos(start)
        if stop == _len:
            max_pos = len(self._lists) - 1
            max_idx = len(self._lists[-1])
        else:
            max_pos, max_idx = _pos(stop)
        return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)
    def _islice(self, min_pos, min_idx, max_pos, max_idx, reverse):
        _lists = self._lists
        if min_pos > max_pos:
            return iter(())
        if min_pos == max_pos:
            if reverse:
                indices = reversed(range(min_idx, max_idx))
                return map(_lists[min_pos].__getitem__, indices)
            indices = range(min_idx, max_idx)
            return map(_lists[min_pos].__getitem__, indices)
        next_pos = min_pos + 1
        if next_pos == max_pos:
            if reverse:
                min_indices = range(min_idx, len(_lists[min_pos]))
                max_indices = range(max_idx)
                return chain(
                    map(_lists[max_pos].__getitem__, reversed(max_indices)),
                    map(_lists[min_pos].__getitem__, reversed(min_indices)),
                )
            min_indices = range(min_idx, len(_lists[min_pos]))
            max_indices = range(max_idx)
            return chain(
                map(_lists[min_pos].__getitem__, min_indices),
                map(_lists[max_pos].__getitem__, max_indices),
            )
        if reverse:
            min_indices = range(min_idx, len(_lists[min_pos]))
            sublist_indices = range(next_pos, max_pos)
            sublists = map(_lists.__getitem__, reversed(sublist_indices))
            max_indices = range(max_idx)
            return chain(
                map(_lists[max_pos].__getitem__, reversed(max_indices)),
                chain.from_iterable(map(reversed, sublists)),
                map(_lists[min_pos].__getitem__, reversed(min_indices)),
            )
        min_indices = range(min_idx, len(_lists[min_pos]))
        sublist_indices = range(next_pos, max_pos)
        sublists = map(_lists.__getitem__, sublist_indices)
        max_indices = range(max_idx)
        return chain(
            map(_lists[min_pos].__getitem__, min_indices),
            chain.from_iterable(sublists),
            map(_lists[max_pos].__getitem__, max_indices),
        )
    def irange(self, minimum=None, maximum=None, inclusive=(True, True), reverse=False):
        _maxes = self._maxes
        if not _maxes:
            return iter(())
        _lists = self._lists
        # Calculate the minimum (pos, idx) pair. By default this location
        # will be inclusive in our calculation.
        if minimum is None:
            min_pos = 0
            min_idx = 0
        else:
            if inclusive[0]:
                min_pos = bisect_left(_maxes, minimum)
                if min_pos == len(_maxes):
                    return iter(())
                min_idx = bisect_left(_lists[min_pos], minimum)
            else:
                min_pos = bisect_right(_maxes, minimum)
                if min_pos == len(_maxes):
                    return iter(())
                min_idx = bisect_right(_lists[min_pos], minimum)
        # Calculate the maximum (pos, idx) pair. By default this location
        # will be exclusive in our calculation.
        if maximum is None:
            max_pos = len(_maxes) - 1
            max_idx = len(_lists[max_pos])
        else:
            if inclusive[1]:
                max_pos = bisect_right(_maxes, maximum)
                if max_pos == len(_maxes):
                    max_pos -= 1
                    max_idx = len(_lists[max_pos])
                else:
                    max_idx = bisect_right(_lists[max_pos], maximum)
            else:
                max_pos = bisect_left(_maxes, maximum)
                if max_pos == len(_maxes):
                    max_pos -= 1
                    max_idx = len(_lists[max_pos])
                else:
                    max_idx = bisect_left(_lists[max_pos], maximum)
        return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)
    def __len__(self):
        return self._len
    def bisect_left(self, value):
        _maxes = self._maxes
        if not _maxes:
            return 0
        pos = bisect_left(_maxes, value)
        if pos == len(_maxes):
            return self._len
        idx = bisect_left(self._lists[pos], value)
        return self._loc(pos, idx)
    def bisect_right(self, value):
        _maxes = self._maxes
        if not _maxes:
            return 0
        pos = bisect_right(_maxes, value)
        if pos == len(_maxes):
            return self._len
        idx = bisect_right(self._lists[pos], value)
        return self._loc(pos, idx)
    bisect = bisect_right
    _bisect_right = bisect_right
    def count(self, value):
        _maxes = self._maxes
        if not _maxes:
            return 0
        pos_left = bisect_left(_maxes, value)
        if pos_left == len(_maxes):
            return 0
        _lists = self._lists
        idx_left = bisect_left(_lists[pos_left], value)
        pos_right = bisect_right(_maxes, value)
        if pos_right == len(_maxes):
            return self._len - self._loc(pos_left, idx_left)
        idx_right = bisect_right(_lists[pos_right], value)
        if pos_left == pos_right:
            return idx_right - idx_left
        right = self._loc(pos_right, idx_right)
        left = self._loc(pos_left, idx_left)
        return right - left
    def copy(self):
        return self.__class__(self)
    __copy__ = copy
    def append(self, value):
        raise NotImplementedError('use ``sl.add(value)`` instead')
    def extend(self, values):
        raise NotImplementedError('use ``sl.update(values)`` instead')
    def insert(self, index, value):
        raise NotImplementedError('use ``sl.add(value)`` instead')
    def pop(self, index=-1):
        if not self._len:
            raise IndexError('pop index out of range')
        _lists = self._lists
        if index == 0:
            val = _lists[0][0]
            self._delete(0, 0)
            return val
        if index == -1:
            pos = len(_lists) - 1
            loc = len(_lists[pos]) - 1
            val = _lists[pos][loc]
            self._delete(pos, loc)
            return val
        if 0 <= index < len(_lists[0]):
            val = _lists[0][index]
            self._delete(0, index)
            return val
        len_last = len(_lists[-1])
        if -len_last < index < 0:
            pos = len(_lists) - 1
            loc = len_last + index
            val = _lists[pos][loc]
            self._delete(pos, loc)
            return val
        pos, idx = self._pos(index)
        val = _lists[pos][idx]
        self._delete(pos, idx)
        return val
    def index(self, value, start=None, stop=None):
        _len = self._len
        if not _len:
            raise ValueError(f'{value!r} is not in list')
        if start is None:
            start = 0
        if start < 0:
            start += _len
        if start < 0:
            start = 0
        if stop is None:
            stop = _len
        if stop < 0:
            stop += _len
        if stop > _len:
            stop = _len
        if stop <= start:
            raise ValueError(f'{value!r} is not in list')
        _maxes = self._maxes
        pos_left = bisect_left(_maxes, value)
        if pos_left == len(_maxes):
            raise ValueError(f'{value!r} is not in list')
        _lists = self._lists
        idx_left = bisect_left(_lists[pos_left], value)
        if _lists[pos_left][idx_left] != value:
            raise ValueError(f'{value!r} is not in list')
        stop -= 1
        left = self._loc(pos_left, idx_left)
        if start <= left:
            if left <= stop:
                return left
        else:
            right = self._bisect_right(value) - 1
            if start <= right:
                return start
        raise ValueError(f'{value!r} is not in list')
    def __add__(self, other):
        values = reduce(iadd, self._lists, [])
        values.extend(other)
        return self.__class__(values)
    __radd__ = __add__
    def __iadd__(self, other):
        self._update(other)
        return self
    def __mul__(self, num):
        values = reduce(iadd, self._lists, []) * num
        return self.__class__(values)
    __rmul__ = __mul__
    def __imul__(self, num):
        values = reduce(iadd, self._lists, []) * num
        self._clear()
        self._update(values)
        return self
    def __make_cmp(seq_op, symbol, doc):
        def comparer(self, other):
            if not isinstance(other, Sequence):
                return NotImplemented
            self_len = self._len
            len_other = len(other)
            if self_len != len_other:
                if seq_op is eq:
                    return False
                if seq_op is ne:
                    return True
            for alpha, beta in zip(self, other):
                if alpha != beta:
                    return seq_op(alpha, beta)
            return seq_op(self_len, len_other)
        seq_op_name = seq_op.__name__
        comparer.__name__ = f'__{seq_op_name}__'
        doc_str = """Return true if and only if sorted list is {0} `other`.
        """
        comparer.__doc__ = dedent(doc_str.format(doc, seq_op_name, symbol))
        return comparer
    __eq__ = __make_cmp(eq, '==', 'equal to')
    __ne__ = __make_cmp(ne, '!=', 'not equal to')
    __lt__ = __make_cmp(lt, '<', 'less than')
    __gt__ = __make_cmp(gt, '>', 'greater than')
    __le__ = __make_cmp(le, '<=', 'less than or equal to')
    __ge__ = __make_cmp(ge, '>=', 'greater than or equal to')
    __make_cmp = staticmethod(__make_cmp)
    def __reduce__(self):
        values = reduce(iadd, self._lists, [])
        return (type(self), (values,))
    @recursive_repr()
    def __repr__(self):
        return f'{type(self).__name__}({list(self)!r})'
    def _check(self):
        try:
            assert self._load >= 4
            assert len(self._maxes) == len(self._lists)
            assert self._len == sum(len(sublist) for sublist in self._lists)
            # Check all sublists are sorted.
            for sublist in self._lists:
                for pos in range(1, len(sublist)):
                    assert sublist[pos - 1] <= sublist[pos]
            # Check beginning/end of sublists are sorted.
            for pos in range(1, len(self._lists)):
                assert self._lists[pos - 1][-1] <= self._lists[pos][0]
            # Check _maxes index is the last value of each sublist.
            for pos in range(len(self._maxes)):
                assert self._maxes[pos] == self._lists[pos][-1]
            # Check sublist lengths are less than double load-factor.
            double = self._load << 1
            assert all(len(sublist) <= double for sublist in self._lists)
            # Check sublist lengths are greater than half load-factor for all
            # but the last sublist.
            half = self._load >> 1
            for pos in range(0, len(self._lists) - 1):
                assert len(self._lists[pos]) >= half
            if self._index:
                assert self._len == self._index[0]
                assert len(self._index) == self._offset + len(self._lists)
                # Check index leaf nodes equal length of sublists.
                for pos in range(len(self._lists)):
                    leaf = self._index[self._offset + pos]
                    assert leaf == len(self._lists[pos])
                # Check index branch nodes are the sum of their children.
                for pos in range(self._offset):
                    child = (pos << 1) + 1
                    if child >= len(self._index):
                        assert self._index[pos] == 0
                    elif child + 1 == len(self._index):
                        assert self._index[pos] == self._index[child]
                    else:
                        child_sum = self._index[child] + self._index[child + 1]
                        assert child_sum == self._index[pos]
        except:
            traceback.print_exc(file=sys.stdout)
            print('len', self._len)
            print('load', self._load)
            print('offset', self._offset)
            print('len_index', len(self._index))
            print('index', self._index)
            print('len_maxes', len(self._maxes))
            print('maxes', self._maxes)
            print('len_lists', len(self._lists))
            print('lists', self._lists)
            raise
def identity(value):
    return value
class SortedKeyList(SortedList):
    def __init__(self, iterable=None, key=identity):
        self._key = key
        self._len = 0
        self._load = self.DEFAULT_LOAD_FACTOR
        self._lists = []
        self._keys = []
        self._maxes = []
        self._index = []
        self._offset = 0
        if iterable is not None:
            self._update(iterable)
    def __new__(cls, iterable=None, key=identity):
        return object.__new__(cls)
    @property
    def key(self):
        return self._key
    def clear(self):
        self._len = 0
        del self._lists[:]
        del self._keys[:]
        del self._maxes[:]
        del self._index[:]
    _clear = clear
    def add(self, value):
        _lists = self._lists
        _keys = self._keys
        _maxes = self._maxes
        key = self._key(value)
        if _maxes:
            pos = bisect_right(_maxes, key)
            if pos == len(_maxes):
                pos -= 1
                _lists[pos].append(value)
                _keys[pos].append(key)
                _maxes[pos] = key
            else:
                idx = bisect_right(_keys[pos], key)
                _lists[pos].insert(idx, value)
                _keys[pos].insert(idx, key)
            self._expand(pos)
        else:
            _lists.append([value])
            _keys.append([key])
            _maxes.append(key)
        self._len += 1
    def _expand(self, pos):
        _lists = self._lists
        _keys = self._keys
        _index = self._index
        if len(_keys[pos]) > (self._load << 1):
            _maxes = self._maxes
            _load = self._load
            _lists_pos = _lists[pos]
            _keys_pos = _keys[pos]
            half = _lists_pos[_load:]
            half_keys = _keys_pos[_load:]
            del _lists_pos[_load:]
            del _keys_pos[_load:]
            _maxes[pos] = _keys_pos[-1]
            _lists.insert(pos + 1, half)
            _keys.insert(pos + 1, half_keys)
            _maxes.insert(pos + 1, half_keys[-1])
            del _index[:]
        else:
            if _index:
                child = self._offset + pos
                while child:
                    _index[child] += 1
                    child = (child - 1) >> 1
                _index[0] += 1
    def update(self, iterable):
        _lists = self._lists
        _keys = self._keys
        _maxes = self._maxes
        values = sorted(iterable, key=self._key)
        if _maxes:
            if len(values) * 4 >= self._len:
                _lists.append(values)
                values = reduce(iadd, _lists, [])
                values.sort(key=self._key)
                self._clear()
            else:
                _add = self.add
                for val in values:
                    _add(val)
                return
        _load = self._load
        _lists.extend(
            values[pos : (pos + _load)] for pos in range(0, len(values), _load)
        )
        _keys.extend(list(map(self._key, _list)) for _list in _lists)
        _maxes.extend(sublist[-1] for sublist in _keys)
        self._len = len(values)
        del self._index[:]
    _update = update
    def __contains__(self, value):
        _maxes = self._maxes
        if not _maxes:
            return False
        key = self._key(value)
        pos = bisect_left(_maxes, key)
        if pos == len(_maxes):
            return False
        _lists = self._lists
        _keys = self._keys
        idx = bisect_left(_keys[pos], key)
        len_keys = len(_keys)
        len_sublist = len(_keys[pos])
        while True:
            if _keys[pos][idx] != key:
                return False
            if _lists[pos][idx] == value:
                return True
            idx += 1
            if idx == len_sublist:
                pos += 1
                if pos == len_keys:
                    return False
                len_sublist = len(_keys[pos])
                idx = 0
    def discard(self, value):
        _maxes = self._maxes
        if not _maxes:
            return
        key = self._key(value)
        pos = bisect_left(_maxes, key)
        if pos == len(_maxes):
            return
        _lists = self._lists
        _keys = self._keys
        idx = bisect_left(_keys[pos], key)
        len_keys = len(_keys)
        len_sublist = len(_keys[pos])
        while True:
            if _keys[pos][idx] != key:
                return
            if _lists[pos][idx] == value:
                self._delete(pos, idx)
                return
            idx += 1
            if idx == len_sublist:
                pos += 1
                if pos == len_keys:
                    return
                len_sublist = len(_keys[pos])
                idx = 0
    def remove(self, value):
        _maxes = self._maxes
        if not _maxes:
            raise ValueError(f'{value!r} not in list')
        key = self._key(value)
        pos = bisect_left(_maxes, key)
        if pos == len(_maxes):
            raise ValueError(f'{value!r} not in list')
        _lists = self._lists
        _keys = self._keys
        idx = bisect_left(_keys[pos], key)
        len_keys = len(_keys)
        len_sublist = len(_keys[pos])
        while True:
            if _keys[pos][idx] != key:
                raise ValueError(f'{value!r} not in list')
            if _lists[pos][idx] == value:
                self._delete(pos, idx)
                return
            idx += 1
            if idx == len_sublist:
                pos += 1
                if pos == len_keys:
                    raise ValueError(f'{value!r} not in list')
                len_sublist = len(_keys[pos])
                idx = 0
    def _delete(self, pos, idx):
        _lists = self._lists
        _keys = self._keys
        _maxes = self._maxes
        _index = self._index
        keys_pos = _keys[pos]
        lists_pos = _lists[pos]
        del keys_pos[idx]
        del lists_pos[idx]
        self._len -= 1
        len_keys_pos = len(keys_pos)
        if len_keys_pos > (self._load >> 1):
            _maxes[pos] = keys_pos[-1]
            if _index:
                child = self._offset + pos
                while child > 0:
                    _index[child] -= 1
                    child = (child - 1) >> 1
                _index[0] -= 1
        elif len(_keys) > 1:
            if not pos:
                pos += 1
            prev = pos - 1
            _keys[prev].extend(_keys[pos])
            _lists[prev].extend(_lists[pos])
            _maxes[prev] = _keys[prev][-1]
            del _lists[pos]
            del _keys[pos]
            del _maxes[pos]
            del _index[:]
            self._expand(prev)
        elif len_keys_pos:
            _maxes[pos] = keys_pos[-1]
        else:
            del _lists[pos]
            del _keys[pos]
            del _maxes[pos]
            del _index[:]
    def irange(self, minimum=None, maximum=None, inclusive=(True, True), reverse=False):
        min_key = self._key(minimum) if minimum is not None else None
        max_key = self._key(maximum) if maximum is not None else None
        return self._irange_key(
            min_key=min_key,
            max_key=max_key,
            inclusive=inclusive,
            reverse=reverse,
        )
    def irange_key(
        self, min_key=None, max_key=None, inclusive=(True, True), reverse=False
    ):
        _maxes = self._maxes
        if not _maxes:
            return iter(())
        _keys = self._keys
        # Calculate the minimum (pos, idx) pair. By default this location
        # will be inclusive in our calculation.
        if min_key is None:
            min_pos = 0
            min_idx = 0
        else:
            if inclusive[0]:
                min_pos = bisect_left(_maxes, min_key)
                if min_pos == len(_maxes):
                    return iter(())
                min_idx = bisect_left(_keys[min_pos], min_key)
            else:
                min_pos = bisect_right(_maxes, min_key)
                if min_pos == len(_maxes):
                    return iter(())
                min_idx = bisect_right(_keys[min_pos], min_key)
        # Calculate the maximum (pos, idx) pair. By default this location
        # will be exclusive in our calculation.
        if max_key is None:
            max_pos = len(_maxes) - 1
            max_idx = len(_keys[max_pos])
        else:
            if inclusive[1]:
                max_pos = bisect_right(_maxes, max_key)
                if max_pos == len(_maxes):
                    max_pos -= 1
                    max_idx = len(_keys[max_pos])
                else:
                    max_idx = bisect_right(_keys[max_pos], max_key)
            else:
                max_pos = bisect_left(_maxes, max_key)
                if max_pos == len(_maxes):
                    max_pos -= 1
                    max_idx = len(_keys[max_pos])
                else:
                    max_idx = bisect_left(_keys[max_pos], max_key)
        return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)
    _irange_key = irange_key
    def bisect_left(self, value):
        return self._bisect_key_left(self._key(value))
    def bisect_right(self, value):
        return self._bisect_key_right(self._key(value))
    bisect = bisect_right
    def bisect_key_left(self, key):
        _maxes = self._maxes
        if not _maxes:
            return 0
        pos = bisect_left(_maxes, key)
        if pos == len(_maxes):
            return self._len
        idx = bisect_left(self._keys[pos], key)
        return self._loc(pos, idx)
    _bisect_key_left = bisect_key_left
    def bisect_key_right(self, key):
        _maxes = self._maxes
        if not _maxes:
            return 0
        pos = bisect_right(_maxes, key)
        if pos == len(_maxes):
            return self._len
        idx = bisect_right(self._keys[pos], key)
        return self._loc(pos, idx)
    bisect_key = bisect_key_right
    _bisect_key_right = bisect_key_right
    def count(self, value):
        _maxes = self._maxes
        if not _maxes:
            return 0
        key = self._key(value)
        pos = bisect_left(_maxes, key)
        if pos == len(_maxes):
            return 0
        _lists = self._lists
        _keys = self._keys
        idx = bisect_left(_keys[pos], key)
        total = 0
        len_keys = len(_keys)
        len_sublist = len(_keys[pos])
        while True:
            if _keys[pos][idx] != key:
                return total
            if _lists[pos][idx] == value:
                total += 1
            idx += 1
            if idx == len_sublist:
                pos += 1
                if pos == len_keys:
                    return total
                len_sublist = len(_keys[pos])
                idx = 0
    def copy(self):
        return self.__class__(self, key=self._key)
    __copy__ = copy
    def index(self, value, start=None, stop=None):
        _len = self._len
        if not _len:
            raise ValueError(f'{value!r} is not in list')
        if start is None:
            start = 0
        if start < 0:
            start += _len
        if start < 0:
            start = 0
        if stop is None:
            stop = _len
        if stop < 0:
            stop += _len
        if stop > _len:
            stop = _len
        if stop <= start:
            raise ValueError(f'{value!r} is not in list')
        _maxes = self._maxes
        key = self._key(value)
        pos = bisect_left(_maxes, key)
        if pos == len(_maxes):
            raise ValueError(f'{value!r} is not in list')
        stop -= 1
        _lists = self._lists
        _keys = self._keys
        idx = bisect_left(_keys[pos], key)
        len_keys = len(_keys)
        len_sublist = len(_keys[pos])
        while True:
            if _keys[pos][idx] != key:
                raise ValueError(f'{value!r} is not in list')
            if _lists[pos][idx] == value:
                loc = self._loc(pos, idx)
                if start <= loc <= stop:
                    return loc
                elif loc > stop:
                    break
            idx += 1
            if idx == len_sublist:
                pos += 1
                if pos == len_keys:
                    raise ValueError(f'{value!r} is not in list')
                len_sublist = len(_keys[pos])
                idx = 0
        raise ValueError(f'{value!r} is not in list')
    def __add__(self, other):
        values = reduce(iadd, self._lists, [])
        values.extend(other)
        return self.__class__(values, key=self._key)
    __radd__ = __add__
    def __mul__(self, num):
        values = reduce(iadd, self._lists, []) * num
        return self.__class__(values, key=self._key)
    def __reduce__(self):
        values = reduce(iadd, self._lists, [])
        return (type(self), (values, self.key))
    @recursive_repr()
    def __repr__(self):
        type_name = type(self).__name__
        return f'{type_name}({list(self)!r}, key={self._key!r})'
    def _check(self):
        try:
            assert self._load >= 4
            assert len(self._maxes) == len(self._lists) == len(self._keys)
            assert self._len == sum(len(sublist) for sublist in self._lists)
            # Check all sublists are sorted.
            for sublist in self._keys:
                for pos in range(1, len(sublist)):
                    assert sublist[pos - 1] <= sublist[pos]
            # Check beginning/end of sublists are sorted.
            for pos in range(1, len(self._keys)):
                assert self._keys[pos - 1][-1] <= self._keys[pos][0]
            # Check _keys matches _key mapped to _lists.
            for val_sublist, key_sublist in zip(self._lists, self._keys):
                assert len(val_sublist) == len(key_sublist)
                for val, key in zip(val_sublist, key_sublist):
                    assert self._key(val) == key
            # Check _maxes index is the last value of each sublist.
            for pos in range(len(self._maxes)):
                assert self._maxes[pos] == self._keys[pos][-1]
            # Check sublist lengths are less than double load-factor.
            double = self._load << 1
            assert all(len(sublist) <= double for sublist in self._lists)
            # Check sublist lengths are greater than half load-factor for all
            # but the last sublist.
            half = self._load >> 1
            for pos in range(0, len(self._lists) - 1):
                assert len(self._lists[pos]) >= half
            if self._index:
                assert self._len == self._index[0]
                assert len(self._index) == self._offset + len(self._lists)
                # Check index leaf nodes equal length of sublists.
                for pos in range(len(self._lists)):
                    leaf = self._index[self._offset + pos]
                    assert leaf == len(self._lists[pos])
                # Check index branch nodes are the sum of their children.
                for pos in range(self._offset):
                    child = (pos << 1) + 1
                    if child >= len(self._index):
                        assert self._index[pos] == 0
                    elif child + 1 == len(self._index):
                        assert self._index[pos] == self._index[child]
                    else:
                        child_sum = self._index[child] + self._index[child + 1]
                        assert child_sum == self._index[pos]
        except:
            traceback.print_exc(file=sys.stdout)
            print('len', self._len)
            print('load', self._load)
            print('offset', self._offset)
            print('len_index', len(self._index))
            print('index', self._index)
            print('len_maxes', len(self._maxes))
            print('maxes', self._maxes)
            print('len_keys', len(self._keys))
            print('keys', self._keys)
            print('len_lists', len(self._lists))
            print('lists', self._lists)
            raise
N,M = map(int,input().split())
S = SortedList(range(1,N+1))
dic = {"Y":0, "K":1, "C":2}
ans = [0] * 3
for _ in range(M):
    l,r,t = input().split()
    l = int(l)
    r = int(r)
    if S:
        i = S.bisect_left(l)
    while i < len(S) and S[i] <= r:
        ans[dic[t]] +=1
        S.pop(i)
print(*ans)
            
            
            
        
            
ntuda