結果

問題 No.3239 Omnibus
ユーザー hamamu
提出日時 2025-08-16 00:11:36
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 775 ms / 10,000 ms
コード長 61,272 bytes
コンパイル時間 7,872 ms
コンパイル使用メモリ 371,368 KB
実行使用メモリ 59,624 KB
最終ジャッジ日時 2025-08-16 00:12:04
合計ジャッジ時間 26,238 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #

#if !defined(MYLOCAL)//提出時用テンプレート

#pragma GCC optimize("Ofast")
#if defined(NDEBUG)
#undef NDEBUG
#endif
#include "bits/stdc++.h"
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using namespace std;
using ll=long long;
using dd=long double;
using pll=pair<ll,ll>;
using tll=tuple<ll,ll,ll>;
using qll=tuple<ll,ll,ll,ll>;
using ll2=array<ll,2>;
using ll3=array<ll,3>;
using ll4=array<ll,4>;
using namespace chrono;
constexpr ll INF = 1201001001001001001;
struct Fast{ Fast(){ cin.tie(0); ios::sync_with_stdio(false); cout<<fixed<<setprecision(numeric_limits<double>::max_digits10); } } fast;
#define EXPAND( x ) x//VS用おまじない
#define overload3(_1,_2,_3,name,...) name
#define overload4(_1,_2,_3,_4,name,...) name
#define overload5(_1,_2,_3,_4,_5,name,...) name
#define rep1(N)          for (ll dmyi = 0; dmyi < (N); dmyi++)
#define rep2(i, N)       for (ll i = 0; i < (N); i++)
#define rep3(i, S, E)    for (ll i = (S); i <= (E); i++)
#define rep4(i, S, E, t) for (ll i = (S); i <= (E); i+=(t))
#define rep(...) EXPAND(overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__))
#define dep3(i, E, S)    for (ll i = (E); i >= (S); i--)
#define dep4(i, E, S, t) for (ll i = (E); i >= (S); i-=(t))
#define dep(...) EXPAND(overload4(__VA_ARGS__, dep4, dep3,_,_)(__VA_ARGS__))
#define ALL1(v)     (v).begin(),     (v).end()
#define ALL2(v,E)   (v).begin(),     (v).begin()+((E)+1)
#define ALL3(v,S,E) (v).begin()+(S), (v).begin()+((E)+1)
#define all(...) EXPAND(overload3(__VA_ARGS__, ALL3, ALL2, ALL1)(__VA_ARGS__))
#define RALL1(v)     (v).rbegin(),     (v).rend()
#define RALL2(v,E)   (v).rbegin(),     (v).rbegin()+((E)+1)
#define RALL3(v,S,E) (v).rbegin()+(S), (v).rbegin()+((E)+1)
#define rall(...) EXPAND(overload3(__VA_ARGS__, RALL3, RALL2, RALL1)(__VA_ARGS__))
template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; }return false; }
template<class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; }return false; }
template<class T> inline auto maxe(T &&v,ll S,ll E){ return *max_element(all(v,S,E)); }
template<class T> inline auto maxe(T &&v){ return *max_element(all(v)); }
template<class T> inline auto mine(T &&v,ll S,ll E){ return *min_element(all(v,S,E)); }
template<class T> inline auto mine(T &&v){ return *min_element(all(v)); }
template<class T,class U=typename remove_reference<T>::type::value_type>
inline U sum(T &&v,ll S,ll E) {return accumulate(all(v,S,E),U());}
template<class T> inline auto sum(T &&v) {return sum(v,0,v.end()-v.begin()-1);}
template<class T> inline ll sz(T &&v){ return (ll)v.size(); }
inline ll Ceil(ll a,ll b){ return (a<0) ? -(-a/b) : (a+b-1)/b; } //負もOK
inline ll Floor(ll a,ll b){ return -Ceil(-a,b); } //負もOK
inline ll Floormod(ll a,ll m){ return Floor(a,m)*m; } //負もOK
inline ll Ceilmod(ll a,ll m){ return Ceil(a,m)*m; } //負もOK
inline ll Mod(ll a,ll m){ ll r=a%m; if(r<0)r+=m; return r; } //負もOK
template<class T> inline T Pow(T a,ll n){ T r=1; for(; n>0; n>>=1,a*=a){ if(n&1)r*=a; } return r; }
inline ll Pow(int a,ll n){ return Pow((ll)a,n); }
inline ll limitmul(ll a,ll b,ll u){ return b==0||a<=u/b ? a*b : u; }//min(a*b,u) a,b,u≧0

//pair用テンプレート
template<class T,class S> inline pair<T,S>& operator+=(pair<T,S> &a,const pair<T,S> &b){ a.first+=b.first; a.second+=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator-=(pair<T,S> &a,const pair<T,S> &b){ a.first-=b.first; a.second-=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator*=(pair<T,S> &a,const pair<T,S> &b){ a.first*=b.first; a.second*=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator/=(pair<T,S> &a,const pair<T,S> &b){ a.first/=b.first; a.second/=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator%=(pair<T,S> &a,const pair<T,S> &b){ a.first%=b.first; a.second%=b.second; return a; }
template<class T,class S,class R> inline pair<T,S>& operator+=(pair<T,S> &a,R b){ a.first+=b; a.second+=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator-=(pair<T,S> &a,R b){ a.first-=b; a.second-=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator*=(pair<T,S> &a,R b){ a.first*=b; a.second*=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator/=(pair<T,S> &a,R b){ a.first/=b; a.second/=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator%=(pair<T,S> &a,R b){ a.first%=b; a.second%=b; return a; }
template<class T,class S,class R> inline pair<T,S> operator+(const pair<T,S> &a,R b){ pair<T,S> c=a; return c+=b; }
template<class T,class S,class R> inline pair<T,S> operator-(const pair<T,S> &a,R b){ pair<T,S> c=a; return c-=b; }
template<class T,class S,class R> inline pair<T,S> operator*(const pair<T,S> &a,R b){ pair<T,S> c=a; return c*=b; }
template<class T,class S,class R> inline pair<T,S> operator/(const pair<T,S> &a,R b){ pair<T,S> c=a; return c/=b; }
template<class T,class S,class R> inline pair<T,S> operator%(const pair<T,S> &a,R b){ pair<T,S> c=a; return c%=b; }
template<class T,class S,class R> inline pair<T,S> operator-(R b,const pair<T,S> &a){ pair<T,S> c=-a; return c+=b; }
template<class T,class S> inline pair<T,S> operator-(const pair<T,S> &a,const pair<T,S> &b){ pair<T,S> c=a; return c-=b; }
template<class T,class S> inline pair<T,S> operator-(const pair<T,S> &a){ pair<T,S> c=a; return c*=(-1); }
template<class T,class S> inline ostream &operator<<(ostream &os,const pair<T,S> &a){ return os << a.first << ' ' << a.second; }

//tuple用テンプレート 出力用のみ
template<class T,class S,class R> inline ostream &operator<<(ostream &os,const tuple<T,S,R> &a){ return os << get<0>(a) << ' ' << get<1>(a) << ' ' << get<2>(a); }
template<class T,class S,class R,class Q> inline ostream &operator<<(ostream &os,const tuple<T,S,R,Q> &a){ return os << get<0>(a) << ' ' << get<1>(a) << ' ' << get<2>(a) << ' ' << get<3>(a); }

//vector用テンプレート
template<class T> inline ostream &operator<<(ostream &os,const vector<T> &a){ for (ll i=0; i<(ll)a.size(); i++) os<<(i>0?" ":"")<<a[i];  return os; }

//array用テンプレート
template<class T,size_t S> inline array<T,S>& operator+=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]+=b[i];  return a; }
template<class T,size_t S> inline array<T,S>& operator-=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]-=b[i];  return a; }
template<class T,size_t S> inline array<T,S>& operator*=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]*=b[i];  return a; }
template<class T,size_t S> inline array<T,S>& operator/=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]/=b[i];  return a; }
template<class T,size_t S> inline array<T,S>& operator%=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]%=b[i];  return a; }
template<class T,size_t S,class R> inline array<T,S>& operator+=(array<T,S> &a,R b){ for (T &e: a) e+=b;  return a; }
template<class T,size_t S,class R> inline array<T,S>& operator-=(array<T,S> &a,R b){ for (T &e: a) e-=b;  return a; }
template<class T,size_t S,class R> inline array<T,S>& operator*=(array<T,S> &a,R b){ for (T &e: a) e*=b;  return a; }
template<class T,size_t S,class R> inline array<T,S>& operator/=(array<T,S> &a,R b){ for (T &e: a) e/=b;  return a; }
template<class T,size_t S,class R> inline array<T,S>& operator%=(array<T,S> &a,R b){ for (T &e: a) e%=b;  return a; }
template<class T,size_t S,class R> inline array<T,S> operator+(const array<T,S> &a,R b){ array<T,S> c=a; return c+=b; }
template<class T,size_t S,class R> inline array<T,S> operator-(const array<T,S> &a,R b){ array<T,S> c=a; return c-=b; }
template<class T,size_t S,class R> inline array<T,S> operator*(const array<T,S> &a,R b){ array<T,S> c=a; return c*=b; }
template<class T,size_t S,class R> inline array<T,S> operator/(const array<T,S> &a,R b){ array<T,S> c=a; return c/=b; }
template<class T,size_t S,class R> inline array<T,S> operator%(const array<T,S> &a,R b){ array<T,S> c=a; return c%=b; }
template<class T,size_t S,class R> inline array<T,S> operator-(R b,const array<T,S> &a){ array<T,S> c=-a; return c+=b; }
template<class T,size_t S> inline array<T,S> operator-(const array<T,S> &a,const array<T,S> &b){ array<T,S> c=a; return c-=b; }
template<class T,size_t S> inline array<T,S> operator-(const array<T,S> &a){ array<T,S> c=a; return c*=(-1); }
template<class T,size_t S> inline ostream &operator<<(ostream &os,const array<T,S> &a){ for (ll i=0; i<(ll)S; i++) os<<(i>0?" ":"")<<a[i];  return os; }

inline struct{
  system_clock::time_point st = system_clock::now();
  ll operator()()const{return duration_cast<microseconds>(system_clock::now()-st).count()/1000;}
} timeget;

struct cinutil{
  template<class T> static void cin1core(T &a){ cin>>a; }
  template<class T,class S> static void cin1core(pair<T,S> &a){
    cin1core(a.first), cin1core(a.second);
  }
  template<class... Args> static void cin1core(tuple<Args...> &a){
    cinTplRec<tuple<Args...>,sizeof...(Args)-1>()(a);
  }
  template<class T,size_t N>
  static void cin1core(array<T,N> &a){for(int i=0;i<(int)N;++i) cin>>a[i];}
private:
  template<class Tpl,int i> struct cinTplRec{
    void operator()(Tpl &a){ cinTplRec<Tpl,i-1>()(a); cin1core(get<i>(a)); }
  };
  template<class Tpl> struct cinTplRec<Tpl,0>{
    void operator()(Tpl &a){ cin1core(get<0>(a)); }
  };
};
template<class T> T cin1(){ T a; cinutil::cin1core(a); return a; }
template<class... Args> tuple<Args...> cins(){ return cin1<tuple<Args...>>(); }


template<long long MOD> struct mll_{
  using Int = long long;
  using ll = long long;
  ll val_=0;
  /*---- utility ----*/
  mll_ &norm(){ return normR().normS(); }//正規化
  mll_ &normR(){ val_%=MOD; return *this; }//剰余正規化のみ
  mll_ &normS(){ if (val_<0) val_+=MOD; return *this; }//正負正規化のみ
  mll_ &normP(){ if (val_>=MOD) val_-=MOD; return *this; }//加算時正規化
  mll_ &invsg(){ val_=-val_; return normS(); }//正負反転
  ll modinv(int a){//a^-1 mod MOD
    int ypre=0,y=1,apre=MOD;
    while (a>1){
      int t=apre/a;
      apre-=a*t,swap(a,apre);
      ypre-=y*t,swap(y,ypre);
    }
    return y<0 ? y+MOD: y;
  }
  /*---- I/F ----*/
  constexpr mll_(){}
  mll_(ll v): val_(v){ norm(); }
  constexpr mll_(ll v,bool b): val_(v){} //正規化無のコンストラクタ
  Int val()const{ return (Int)val_; }
  bool isnone() const { return val_==-1; } //true:値なし
  mll_ &none() { val_=-1; return *this; } //値なしにする
  mll_ &inv(){ val_=modinv((int)val_); return *this; }
  mll_ &operator+=(mll_ b){ val_+=b.val_; return normP(); }
  mll_ &operator-=(mll_ b){ val_-=b.val_; return normS(); }
  mll_ &operator*=(mll_ b){ val_*=b.val_; return normR(); }
  mll_ &operator/=(mll_ b){ return *this*=b.inv(); }
  mll_ &operator+=(ll b){ return *this+=mll_(b); }
  mll_ &operator-=(ll b){ return *this-=mll_(b); }
  mll_ &operator*=(ll b){ return *this*=mll_(b); }
  mll_ &operator/=(ll b){ return *this/=mll_(b); }
  mll_ &operator--(int){ return *this-=1; }
  mll_ &operator++(int){ return *this+=1; }
  mll_ operator-()const{ return mll_(*this).invsg(); }
  mll_ operator+(mll_ b)const{ return mll_(*this)+=b; }
  mll_ operator-(mll_ b)const{ return mll_(*this)-=b; }
  mll_ operator*(mll_ b)const{ return mll_(*this)*=b; }
  mll_ operator/(mll_ b)const{ return mll_(*this)/=b; }
  mll_ operator+(ll b)const{ return mll_(*this)+=b; }
  mll_ operator-(ll b)const{ return mll_(*this)-=b; }
  mll_ operator*(ll b)const{ return mll_(*this)*=b; }
  mll_ operator/(ll b)const{ return mll_(*this)/=b; }
  friend mll_ operator+(ll a,mll_ b){ return b+a; }
  friend mll_ operator-(ll a,mll_ b){ return -b+a; }
  friend mll_ operator*(ll a,mll_ b){ return b*a; }
  friend mll_ operator/(ll a,mll_ b){ return mll_(a)/b; }
  auto operator<=>(const mll_& b) const = default;
  friend ostream &operator<<(ostream &os,mll_  a){ return os << a.val_; }
  friend istream &operator>>(istream &is,mll_ &a){ return is >> a.val_; }
  mll_ pow(ll k)const{
    mll_ ret(1,false),a(*this);
    for (; k>0; k>>=1,a*=a) if (k&1)ret*=a;
    return ret;
  }
  static constexpr int mod() { return MOD; }
  //enum{ modll=MOD };
};


struct bll{
  ll s=0;
  bll(ll s_=0): s(s_){}
  bll(int s_): s(s_){}
  bll(const string &bitstr): s(str2val(bitstr)){}
  bll(const char   *bitstr): s(str2val(bitstr)){}
  struct ref {
    bll &b; const ll msk;
    ref(bll &b_,ll pos):b(b_),msk(1LL<<pos){}
    operator ll() const { return (b.s&msk)!=0; }
    ref &operator=(bool x){ if(x) b.s|=msk; else b.s&=~msk; return *this; }
  };
  ref operator[](ll pos){ return ref(*this,pos); }
  ll operator[](ll pos) const { return (s>>pos)&1; }
  bll &operator=(int b){ s=b; return *this; }
  bll &operator=(ll  b){ s=b; return *this; }
  bll &operator=(const string &bitstr){ s=str2val(bitstr); return *this; }
  bll &operator=(const char   *bitstr){ s=str2val(bitstr); return *this; }
  bll operator++(int){ bll b(*this); s++; return b; }
  bll operator--(int){ bll b(*this); s--; return b; }
  operator ll() const noexcept { return s; }
  bll &operator&=(ll b){ s&=b; return *this; }
  bll &operator|=(ll b){ s|=b; return *this; }
  bll &operator^=(ll b){ s^=b; return *this; }
  bll &operator+=(ll b){ s+=b; return *this; }
  bll &operator-=(ll b){ s-=b; return *this; }
  bll &operator<<=(ll i){ s<<=i; return *this; }
  bll &operator>>=(ll i){ s>>=i; return *this; }
  bll operator&(ll b)const{ return s&b; }
  bll operator|(ll b)const{ return s|b; }
  bll operator^(ll b)const{ return s^b; }
  bll operator+(ll b)const{ return s+b; }
  bll operator-(ll b)const{ return s-b; }
  bll operator<<(ll i)const{ return s<<i; }
  bll operator>>(ll i)const{ return s>>i; }
  bll operator&(int b)const{ return s&b; }
  bll operator|(int b)const{ return s|b; }
  bll operator^(int b)const{ return s^b; }
  bll operator+(int b)const{ return s+b; }
  bll operator-(int b)const{ return s-b; }
  bll operator<<(int i)const{ return s<<i; }
  bll operator>>(int i)const{ return s>>i; }
  bll operator~()const{ return ~s; }
  bll &oneq  (bll msk){ s|= msk.s; return *this; }
  bll &offeq (bll msk){ s&=~msk.s; return *this; }
  bll &flipeq(bll msk){ s^= msk.s; return *this; }
  bll on   (bll msk)const{ return bll(s).oneq  (msk); }
  bll off  (bll msk)const{ return bll(s).offeq (msk); }
  bll flip (bll msk)const{ return bll(s).flipeq(msk); }
  bool any0(bll msk)const{ return ~s&msk.s; }
  bool any1(bll msk)const{ return  s&msk.s; }
  bool all0(bll msk)const{ return !any1(msk); }
  bool all1(bll msk)const{ return !any0(msk); }
  bll &oneq  (ll l,ll r){ return oneq  (rngmsk(l,r)); }
  bll &offeq (ll l,ll r){ return offeq (rngmsk(l,r)); }
  bll &flipeq(ll l,ll r){ return flipeq(rngmsk(l,r)); }
  bll on   (ll l,ll r)const{ return on  (rngmsk(l,r)); }
  bll off  (ll l,ll r)const{ return off (rngmsk(l,r)); }
  bll flip (ll l,ll r)const{ return flip(rngmsk(l,r)); }
  bool any0(ll l,ll r)const{ return any0(rngmsk(l,r)); }
  bool any1(ll l,ll r)const{ return any1(rngmsk(l,r)); }
  bool all0(ll l,ll r)const{ return all0(rngmsk(l,r)); }
  bool all1(ll l,ll r)const{ return all1(rngmsk(l,r)); }
  bll &maskeq(ll l,ll r){ s&=rngmsk(l,r); return *this; }
  bll mask(ll l,ll r)const{ return bll(s).maskeq(l,r); }
  bll &oneq  (ll i){ s|= (1LL<<i); return *this; }
  bll &offeq (ll i){ s&=~(1LL<<i); return *this; }
  bll &flipeq(ll i){ s^= (1LL<<i); return *this; }
  bll on  (ll i)const{ return s| (1LL<<i); }
  bll off (ll i)const{ return s&~(1LL<<i); }
  bll flip(ll i)const{ return s^ (1LL<<i); }
  bool contains(ll b)const{ return (s&b)==b; }
  bll substr(ll l,ll r)const{ return (s&rngmsk(l,r))>>r; }
  static bll rngmsk(ll l,ll r){ return (1LL<<(l+1))-(1LL<<r); }
  ll msbit()const{
    for(ll x=63,o=-1;;){
      ll m=(x+o)/2;
      if((1LL<<m)<=s) o=m; else x=m;
      if(x-o==1) return o;
    }
  }
  ll lsbit()const{ return bll(lsb()).msbit(); }
  ll msb()const{ ll pos=msbit(); return (pos<0) ? 0LL : 1LL<<pos; }
  ll lsb()const{ return s&-s; }
  ll count()const{ return bitset<64>(s).count(); }
  ll count(bll msk)const{ return (msk&s).count(); }
  ll count(ll l,ll r)const{ return mask(l,r).count(); }
  vector<ll> idxes()const{
    vector<ll> v;
    for(ll i=0,t=s; t; t>>=1,i++) if(t&1)v.push_back(i);
    return v;
  }
  string to_string(ll wd=-1)const{
    wd=max({wd,msbit()+1,1LL});
    string ret;
    for(ll i=wd-1;i>=0;--i) ret += '0'+char((s>>i)&1);
    return ret;
  }
private:
  ll str2val(const string &bitstr){
    ll val=0, len=(ll)bitstr.size();
    for(ll i=0;i<len;++i) val|=ll(bitstr[i]-'0')<<(len-1-i);
    return val;
  }
};


template<class T> struct SET: set<T>{
  using P=set<T>;
  typename P::iterator it=P::end();
  template<class...Args> SET(Args...args): P(args...){}
  SET(initializer_list<T> a): P(a.begin(),a.end()){}
  ll size() const { return (ll)P::size(); }
  bool insert(const T &x){ bool r; tie(it,r)=P::insert(x); return r; }
  template <class It> void insert(It st,It en){ P::insert(st,en); }
  void insert(initializer_list<T> a){ P::insert(a.begin(),a.end()); }
  template<class...A> bool emplace(A&&...a){ bool r; tie(it,r)=P::emplace(a...); return r; }
  void eraseit(){ it=P::erase(it); }
  void find(const T &x){ it=P::find(x); }
  bool contains(const T &x){ return P::count(x)==1; }
  void lower_bound(const T &x){ it=P::lower_bound(x); }
  void upper_bound(const T &x){ it=P::upper_bound(x); }
  T floor(const T &x){ return *(it=--P::upper_bound(x)); }
  T ceil (const T &x){ return *(it=P::lower_bound(x)); }
  bool isend() { return it==P::end(); }
  T getit() { return *it; }
  T next() { return *(++it); }
  T prev() { return *(--it); }
  bool nextok() { return !isend() && it!=--P::end(); }
  bool prevok() { return it!=P::begin(); }
  T front() { return *(it=P::begin()); }
  T back()  { return *(it=--P::end()); }
  void pop_front(){ front(); eraseit(); }
  void pop_back(){ back(); eraseit(); }
  void push_front(const T &x){ it=P::insert(P::begin(),x); }
  void push_back (const T &x){ it=P::insert(P::end(),x); }
  void push_out(SET &b){ b.push_front(back()); pop_back(); }
  void pull_in(SET &b){ push_back(b.front()); b.pop_front(); }
};


template<class T> struct cumulativesum{
    using Int = long long;
    using ll = long long;
    using pIT = pair<Int,T>;
    ll n=0;  vector<T> c;
    cumulativesum():c(1){}
    template<class S> cumulativesum(S &&v) : n((ll)v.size()),c(n+1) { Ini(v); }
    template<class S> void init(S &&v){ n=(ll)v.size(); c.resize(n+1); Ini(v); }
    void add(T x) { n++; c.push_back(c.back()+x); }
    T operator()(Int l,Int r){ return c[max(min(n,r+1),0LL)]-c[min(max(0LL,l),n)]; }

    pIT floorGroup(ll l,T x){
        l=clamp(l,0LL,(ll)c.size()-1);
        T th=x+c[l];
        ll r=upper_bound(c.begin(),c.end(),th)-c.begin()-2;
        T rem = r==-2 ? T() : th-c[r+1];
        return {r,rem};
    }

    pIT ceilGroup(ll l,T x){
        l=clamp(l,0LL,(ll)c.size()-1);
        T th=x+c[l];
        ll r=lower_bound(c.begin(),c.end(),th)-c.begin()-1;
        T rem = r==(ll)c.size()-1 ? T() : c[r+1]-th;
        return {r,rem};
    }

    pIT floorGroupRev(ll r,T x){
        // A0+…+A_{l-1} が (A0+…+Ar)-x以上に初めてなったときが答
        r=clamp(r,-1LL,(ll)c.size()-2);
        ll th=c[r+1]-x; //(A0+…+Ar)-x
        ll l=lower_bound(c.begin(),c.end(),th)-c.begin();
        T rem = l==(ll)c.size() ? T() : c[l]-th;
        return {l,rem};
    }

    pIT ceilGroupRev(ll r,T x){
        // A0+…+A_{l-1} が (A0+…+Ar)-x以下な最大のlが答
        r=clamp(r,-1LL,(ll)c.size()-2);
        ll th=c[r+1]-x; //(A0+…+Ar)-x
        ll l=upper_bound(c.begin(),c.end(),th)-c.begin()-1;
        T rem = l==-1 ? T() : th-c[l];
        return {l,rem};
    }

    pIT groupIdx(ll l,T x){
        auto [r,rem]=floorGroup(l,x);
        return (r+1==-1 || r+1==n) ? pIT{r+1,T()} : pIT{r+1,rem};
    }
    pIT groupIdxRev(ll r,T x){
        auto [l,rem]=floorGroupRev(r,x);
        return (l-1==-1 || l-1==n) ? pIT{l-1,T()} : pIT{l-1,c[l]-c[l-1]-1-rem};
    }

    T mx(){//区間和max
        T mn=T(),samx=0;
        for (ll i=1; i<=n; ++i){
            chmax(samx,c[i]-mn);
            chmin(mn,c[i]);
        }
        return samx;
    }
    template<class S> void Ini(S &&v) { for (ll i=0; i<n; ++i) c[i+1]=c[i]+v[i]; }
};
template<class S> cumulativesum(S) -> cumulativesum<typename remove_reference<S>::type::value_type>;


template<class T> vector<T> powers(T m,ll n){
  vector<T> ret(n+1,1);
  for(ll i=1;i<=n;++i) ret[i]=ret[i-1]*m;
  return ret;
}


template <class T> auto runlength(T &&v){
  vector<pair<typename remove_reference<T>::type::value_type,ll>> ret;
  for(auto&&e:v){
    if(ret.empty() or ret.back().first!=e) ret.emplace_back(e,1);
    else ret.back().second++;
  }
  return ret;
}


inline vector<ll> str2num(string &s,char base,const string &etc){
  vector<ll>  v(s.size());
  for(ll i=0;i<(ll)s.size();++i){
    size_t pos=etc.find(s[i]);
    if(pos==etc.npos) v[i]=s[i]-(ll)base;
    else v[i]=-((ll)pos+1);
  }
  return v;
}


template<class T> struct combination{
  vector<T> f,g; ll mxN=0;
  combination(){}
  combination(ll maxN): f(maxN+1,1),g(maxN+1),mxN(maxN) {
    for (ll i=1;i<=mxN;++i) { f[i]=f[i-1]*i; }
    g[mxN]=1/f[mxN];
    for (ll i=mxN;i>=1;--i) { g[i-1]=g[i]*i; }
  }
  T P(ll n,ll r){ return (n<0 || r<0 || n<r) ? T(0) : f[n]*g[n-r]; } //nPr
  T H(ll n,ll r){ return operator()(n+r-1,n-1); }//nHr
  T inv(ll n) { return f[n-1] * g[n]; } //1/n
  T fact(ll n) { return f[n]; } //n!
  T finv(ll n) { return g[n]; } //1/n!
  T operator()(ll n,ll r){
    if (r<0) return 0;
    if (n<0) return operator()(-n+r-1,r) * ((r&1)?-1:1); //-nCr = (-1)^r * n+r-1Cr
    if (n<r) return 0;
    if (n<=mxN) return f[n]*g[n-r]*g[r]; //通常
    //n巨大、rかn-r小
    if (n-r<r) r=n-r;
    T bunsi=1,bunbo=1;
    for (ll i=0;i<r;++i) bunsi*=n-i;
    for (ll i=0;i<r;++i) bunbo*=i+1;
    return bunsi/bunbo;
  }
  template<class SP>
  vector<T> CnLnR(long long nL,long long nR,long long r,SP sp){
    if (nR-nL+1<=0) return vector<T>();
    if (r<0) return vector<T>(nR-nL+1,0);
    vector<T> v=sp(nL-r+1,nR-r+1,r);
    for (T& e: v) e*=finv(r);
    return v;
  }
  template<class SP>
  vector<T> HrLrR(long long n,long long rL,long long rR,SP sp){//r<0不可
    return CnLnR(n-1+rL,n-1+rR,n-1,sp);
  }
};


template<class T> struct wrapVector1d{
  using S=typename T::value_type;
  using Int = long long;
  const T *v;
  S Ini;
  wrapVector1d(const T &v_,S ini_=S()):v(&v_),Ini(ini_){}
  S operator[](Int i)const{ return (i<0 || (Int)v->size()<=i) ? Ini : (*v)[i]; }
};
template<class T> struct wrapVector2d{
  using S=typename T::value_type;
  using Int = long long;
  const vector<T> *v;
  S Ini;
  T dmy;
  wrapVector2d(const vector<T> &v_,S ini_=S()):v(&v_),Ini(ini_){}
  wrapVector1d<T> operator[](ll i)const{
    return (i<0 || (Int)v->size()<=i) ?
      wrapVector1d(dmy,Ini) : wrapVector1d((*v)[i],Ini);
  }
};


namespace dumpstring{//dummy
inline string stringf(const char *format,...){
  char bf[1000];
  va_list ap;
  va_start(ap,format);
  vsprintf(bf,format,ap);
  va_end(ap);
  return string(bf);
}
template <class T> string stringfx(T x,int wd=1){ return ""; }
struct args{
  using Int = long long;
  args(){}
  args &wd(Int wd__){ (void)wd__; return *this; }
  args &sx(Int s){ (void)s; return *this; }
  template<size_t DIM> args &rngs(array<array<Int,DIM>,2> rngs){ return *this; }
  args &tr(vector<Int> tr__){ (void)tr__; return *this; }
  args &tr(){ return *this; }
  args &labels(vector<string> labels__){ (void)labels__; return *this; }
  args &xrev(){ return *this; }
  args &yrev(){ return *this; }
  args &zrev(){ return *this; }
  args &wrev(){ return *this; }
};
template<class NdT>
void dumpNd(const string &h,const NdT &fd,const args &p=args(),ostream &os=cerr){}
};
using dumpstring::stringf; using dumpstring::stringfx;
using dumpstring::args; using dumpstring::dumpNd;

#endif//テンプレートend


template<class T> struct Vector: vector<T>{
  using Int = long long;
  using vT=vector<T>;
  using cvT=const vector<T>;
  using cT=const T;
  using vT::vT; //親クラスのコンストラクタの隠蔽を回避
  using vT::begin,vT::end,vT::insert,vT::erase;
  auto it(Int i){ return begin()+i; }
  auto it(Int i)const{ return begin()+i; }
  Vector(cvT& b):vT(b){}
  Vector(vT&& b):vT(move(b)){}
  Vector(int n,cT& x):vT(n,x){}// ┬ 型推論のためラッパー
  Vector(long long n,cT& x):vT(n,x){}
  template<class S> Vector(const Vector<S>& b):vT(b.begin(),b.end()){}
  template<class S> Vector(const vector<S>& b):vT(b.begin(),b.end()){}
  Vector(Int n,T s,T d){ iota(n,s,d); }
  Vector(Int n,function<T(Int)> g):vT(n){ for(Int i=0;i<n;++i) (*this)[i]=g(i); }
  Vector &operator+=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]+=b[i]; return *this; }
  Vector &operator-=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]-=b[i]; return *this; }
  Vector &operator*=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]*=b[i]; return *this; }
  Vector &operator/=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]/=b[i]; return *this; }
  Vector &operator%=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]%=b[i]; return *this; }
  Vector &operator+=(const Vector<T> &b){ return *this+=(cvT&)b; }
  Vector &operator-=(const Vector<T> &b){ return *this-=(cvT&)b; }
  Vector &operator*=(const Vector<T> &b){ return *this*=(cvT&)b; }
  Vector &operator/=(const Vector<T> &b){ return *this/=(cvT&)b; }
  Vector &operator%=(const Vector<T> &b){ return *this%=(cvT&)b; }
  Vector operator+(cvT &b){ return Vector(*this)+=b; }
  Vector operator-(cvT &b){ return Vector(*this)-=b; }
  Vector operator*(cvT &b){ return Vector(*this)*=b; }
  Vector operator/(cvT &b){ return Vector(*this)/=b; }
  Vector operator%(cvT &b){ return Vector(*this)%=b; }
  Vector operator+(const Vector<T> &b){ return Vector(*this)+=b; }
  Vector operator-(const Vector<T> &b){ return Vector(*this)-=b; }
  Vector operator*(const Vector<T> &b){ return Vector(*this)*=b; }
  Vector operator/(const Vector<T> &b){ return Vector(*this)/=b; }
  Vector operator%(const Vector<T> &b){ return Vector(*this)%=b; }
  template<class S> Vector &operator+=(S x){ for(T &e: *this) e+=x;  return *this; }
  template<class S> Vector &operator-=(S x){ for(T &e: *this) e-=x;  return *this; }
  template<class S> Vector &operator*=(S x){ for(T &e: *this) e*=x;  return *this; }
  template<class S> Vector &operator/=(S x){ for(T &e: *this) e/=x;  return *this; }
  template<class S> Vector &operator%=(S x){ for(T &e: *this) e%=x;  return *this; }
  template<class S> Vector operator+(S x)const{ return Vector(*this)+=x; }
  template<class S> Vector operator-(S x)const{ return Vector(*this)-=x; }
  template<class S> Vector operator*(S x)const{ return Vector(*this)*=x; }
  template<class S> Vector operator/(S x)const{ return Vector(*this)/=x; }
  template<class S> Vector operator%(S x)const{ return Vector(*this)%=x; }
  Vector &operator--(int){ return *this-=1; }
  Vector &operator++(int){ return *this+=1; }
  Vector operator-()const{ return Vector(*this)*=-1; }
  template<class S> friend Vector operator-(S x,const Vector &a){ return -a+=x; }
  Vector slice(Int l,Int r,Int d=1)const{
    Vector ret;
    for(Int i=l;(d>0&&i<=r)||(d<0&&r<=i);i+=d) ret.push_back((*this)[i]);
    return ret;
  }
  Int size()const{ return (Int)vT::size(); }
  Int n()const{ return size(); }
  Vector &push_back(cT& x,Int n=1){ for(Int i=0;i<n;++i){ vT::push_back(x); } return *this; }
  Vector &pop_back(Int n=1){ for(Int i=0;i<n;++i){ vT::pop_back(); } return *this; }
  Vector &push_front(cT& x,Int n=1){ this->insert(0,x,n); return *this; }
  Vector &pop_front(Int n=1){ erase(0,n-1); return *this; }
  T pull_back(){ T x=move(vT::back()); vT::pop_back(); return x; }
  T pull_front(){ T x=move(vT::front()); erase(0); return x; }
  Vector &insert(Int i,cT& x,Int n=1){ insert(it(i),n,x); return *this; }
  Vector &insert(Int i,cvT& b){ insert(it(i),b.begin(),b.end()); return *this; }
  Vector &erase(Int i){ erase(it(i)); return *this; }
  Vector &erase(Int l,Int r){ erase(it(l),it(r+1)); return *this; }
  Vector &erase(const Vector<Int> &idxs){
      for (Int I=0; I<idxs.n(); ++I){
          Int l=idxs[I]+1, r = (I<idxs.n()-1) ? idxs[I+1] : this->n();
          copy(it(l),it(r),it(l-I-1));//[l,r)を前にI+1個ずらす
      }
      vT::resize(this->n()-idxs.n());
      return *this;
  }
  Vector &eraseall(cT& x){ return eraseall(0,size()-1,x); }
  Vector &eraseall(Int l,Int r,cT& x){ erase(remove(it(l),it(r+1),x),it(r+1)); return *this; }
  template<class Pr> Vector &eraseif(Pr pr){ return eraseif(0,size()-1,pr); }
  template<class Pr> Vector &eraseif(Int l,Int r,Pr pr){ erase(remove_if(it(l),it(r+1),pr),it(r+1)); return *this; }
  Vector &concat(cvT &b,Int n=1){
    cvT B = (&b==this) ? *this : vT{};
    for(int i=0;i<n;++i) this->insert(size(),(&b==this)?B:b);
    return *this;
  }
  Vector repeat(Int n){ return Vector{}.concat(*this,n); }
  Vector &reverse(Int l=0,Int r=-1){ r+=r<0?size():0; std::reverse(it(l),it(r+1)); return *this; }
  Vector &rotate(Int m){ return rotate(0,size()-1,m); }
  Vector &rotate(Int l,Int r,Int m){ std::rotate(it(l),it(m),it(r+1)); return *this; }
  Vector &sort(Int l=0,Int r=-1){ r+=r<0?size():0; std::sort(it(l),it(r+1)); return *this; }
  Vector &rsort(Int l=0,Int r=-1){ return sort(l,r).reverse(l,r); }
  template<class Pr> Vector &sort(Pr pr){ return sort(0,size()-1,pr); }
  template<class Pr> Vector &sort(Int l,Int r,Pr pr){ std::sort(it(l),it(r+1),pr); return *this; }
  template<int key> Vector &sortbykey(Int l=0,Int r=-1){
    r+=r<0?size():0;
    sort(l,r,[](cT &x,cT &y){return get<key>(x)<get<key>(y);});
    return *this;
  }
  Vector &uniq(){ erase(unique(begin(),end()),end()); return *this; }
  Vector &sortq(){ return sort().uniq(); }
  Vector &fill(cT& x){ return fill(0,size()-1,x); }
  Vector &fill(Int l,Int r,cT& x){ std::fill(it(l),it(r+1),x); return *this; }
  template<class S=Int> Vector &iota(Int n,T s=0,S d=1){
    vT::resize(n);
    if(n==0) return *this;
    (*this)[0]=s;
    for(int i=1;i<n;++i) (*this)[i]=(*this)[i-1]+d;
    return *this;
  }
  Int count(cT& x)const{ return count(0,size()-1,x); }
  Int count(Int l,Int r,cT& x)const{ return Int(std::count(it(l),it(r+1),x)); }
  template<class Pr> Int countif(Pr pr)const{ return countif(0,size()-1,pr); }
  template<class Pr> Int countif(Int l,Int r,Pr pr)const{ return Int(count_if(it(l),it(r+1),pr)); }
  Int find(cT& x)const{ return find(0,size()-1,x); }
  Int find(Int l,Int r,cT& x)const{ return Int(std::find(it(l),it(r+1),x)-begin()); }
  Int rfind(cT& x)const{ return rfind(0,size()-1,x); }
  Int rfind(Int l,Int r,cT& x)const{
      for (int i=r;i>=l;--i) if ((*this)[i]==x) return i;
      return l-1;
  }
  template<class Pr> Int findif(Pr pr)const{ return findif(0,size()-1,pr); }
  template<class Pr> Int findif(Int l,Int r,Pr pr)const{ return Int(find_if(it(l),it(r+1),pr)-begin()); }
  Vector<Int> findall(cT& x)const{ return findall(0,size()-1,x); }
  Vector<Int> findall(Int l,Int r,cT& x)const{ return findallif(l,r,[&](cT& y){return y==x;}); }
  template<class Pr> Vector<Int> findallif(Pr pr)const{ return findallif(0,size()-1,pr); }
  template<class Pr> Vector<Int> findallif(Int l,Int r,Pr pr)const{
    Vector<Int> ret;
    for(Int i=l;i<=r;++i) if(pr((*this)[i])) ret.push_back(i);
    return ret;
  }
  Int  flooridx(cT& x)const{ return Int(upper_bound(begin(),end(),x)-begin()-1); }
  Int   ceilidx(cT& x)const{ return Int(lower_bound(begin(),end(),x)-begin()); }
  Int  leftnmof(cT& x)const{ return flooridx(x)+1; }
  Int rightnmof(cT& x)const{ return size()-ceilidx(x); }
  bool contains(cT& x)const{ Int i=flooridx(x); return i>=0 && (*this)[i]==x; }
  template<class Pr> Int  flooridx(cT& x,Pr pr)const{ return Int(upper_bound(begin(),end(),x,pr)-begin()-1); }
  template<class Pr> Int   ceilidx(cT& x,Pr pr)const{ return Int(lower_bound(begin(),end(),x,pr)-begin()); }
  template<class Pr> Int  leftnmof(cT& x,Pr pr)const{ return flooridx(x,pr)+1; }
  template<class Pr> Int rightnmof(cT& x,Pr pr)const{ return size()-ceilidx(x,pr); }
  template<class Pr> bool contains(cT& x,Pr pr)const{ Int i=flooridx(x,pr); return i>=0 && (*this)[i]==x; }

  template<class S> using VV    = Vector<Vector<S>>; template<class S> using sVV    = vector<vector<S>>;
  template<class S> using VVV   = Vector<VV<S>>;     template<class S> using sVVV   = vector<sVV<S>>;
  template<class S> using VVVV  = Vector<VVV<S>>;    template<class S> using sVVVV  = vector<sVVV<S>>;
  template<class S> using VVVVV = Vector<VVVV<S>>;   template<class S> using sVVVVV = vector<sVVVV<S>>;
  auto tostd()const{ return tov(*this); }
  template <class S> static vector<S> tov(const Vector<S>&v){ return v; }
  template <class S> static sVV<S>    tov(const VV<S>    &v){ sVV<S>    ret; for(auto&& e:v) ret.push_back(e);         return ret; }
  template <class S> static sVVV<S>   tov(const VVV<S>   &v){ sVVV<S>   ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
  template <class S> static sVVVV<S>  tov(const VVVV<S>  &v){ sVVVV<S>  ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
  template <class S> static sVVVVV<S> tov(const VVVVV<S> &v){ sVVVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
};
/*
vll a={9,8,7},b={1,2,3};
vpll p={{5,3},{7,8},{0,2},};
- -------- 操作系 --------
a+=x a-=x a*=x a/=x a%=x a+x a-x a*x a/x a%x -a x-a a++ a--  //∀i a[i]にxを演算
a+=b a-=b a*=b a/=b a%=b a+b a-b a*b a/b a%b  //要素毎演算(同サイズ時)
a.push_front(x,n); //n個先頭追加 省略時1
a.push_back(x,n);  //n個末尾追加 省略時1
a.pop_front(n);    //n個先頭削除 省略時1
a.pop_back(n);     //n個末尾削除 省略時1
ll x=a.pull_front(); //pop_front()と同時に値取得
ll x=a.pull_back();  //pop_back()と同時に値取得
a.insert(i,x,n); //a[i]にn個x挿入  n省略時1
a.insert(i,b);   //a[i]にvll b挿入
a.erase(i);      //a[i]削除
a.erase(l,r);    //区間[l,r]削除
a.erase(idxs.sortq()); //a[i0],a[i1],…を削除 idxsはソート&ユニーク必要
a.eraseall(x);     //xを全て削除
a.eraseall(l,r,x); //区間[l,r]のxを全て削除
a.eraseif(pr);     //条件prを満たす要素を全て削除
a.eraseif(l,r,pr); //区間[l,r]の 条件prを満たす要素を全て削除
a.concat(b);     //aにbを結合 b=a可
a.concat(b,n);   //aにbをn回結合 b=a可
a.reverse(l,r);  //[l,r]を反転       l,r省略可
a.rotate(m);     //a[m]を先頭にするrotate
a.rotate(l,r,m); //a[m]を先頭にするrotate 範囲[l,r]
a.sort(l,r);     //[l,r]をソート     l,r省略可
a.rsort(l,r);    //[l,r]を逆順ソート l,r省略可
p.sort(l,r,[&](pll x,pll y){return x.second<y.second;});//比較関数指定sort l,r省略可
a.uniq();      //連続同値を1つにする
a.sortq();     //ソートしてユニーク
a.fill(l,r,x); //[l,r]にx代入        l,r省略可
a.iota(n,s,d); //aを等差数列にする 長さn,初項s,公差d
vll a(n,s,d);  //コンストラクタ版iota
vll b=a.slice(st,en,d); //a[st:en:d]   d省略時1
vll b=a.repeat(n);   //aをn回繰り返す
- -------- 検索系 --------
auto pr=[&](auto &x){ return x>0; };  //検索条件
ll m=a.count(x);     //xの個数
ll m=a.count(l,r,x); //xの個数in[l,r]
ll m=a.countif(pr);     //条件満たす個数
ll m=a.countif(l,r,pr); //条件満たす個数in[l,r]
ll i=a.find(x);         //xの最左位置i         ない時N(配列長)
ll i=a.find(l,r,x);     //xの最左位置i in[l,r] ない時r+1
ll i=a.findif(pr);      //条件満たす最左位置i         ない時N(配列長)
ll i=a.findif(l,r,pr);  //条件満たす最左位置i in[l,r] ない時r+1
vll is=a.findall(x);        //xの位置i列挙
vll is=a.findall(l,r,x);    //xの位置i列挙in[l,r]
vll is=a.findallif(pr);     //条件満たす位置i列挙
vll is=a.findallif(l,r,pr); //条件満たす位置i列挙in[l,r]
- -------- 昇順sort済み配列用 --------
ll i=a.flooridx(x);   //x以下の最近傍位置i ない時-1
ll i=a.ceilidx(x);    //x以上の最近傍位置i ない時N(配列長)
ll m=a.leftnmof(x);   //x以下の個数
ll m=a.rightnmof(x);  //x以上の個数
bool b=a.contains(x); //xを含む
- -------- 比較関数prでsort済みの配列用 --------
auto pr=[&](auto &x,auto &y){ return x>y; }; //降順ソート時
ll i=a.flooridx(x,pr);   //x以左の最近傍位置i ない時-1
ll i=a.ceilidx(x,pr);    //x以右の最近傍位置i ない時N(配列長)
ll m=a.leftnmof(x,pr);   //x以左の個数
ll m=a.rightnmof(x,pr);  //x以右の個数
bool b=a.contains(x,pr); //xを含む

a.concat(b,n).pop_back().rsort().uniq();  //連続適用できる
auto aa=a.tostd(); //N次元VectorをN次元vectorに変換(N≦5)
*/


template<class T> struct wrapv: Vector<T>{
  using Int = long long;
  T def=T();
  T defIF=T();
  wrapv(const Vector<T> &b):Vector<T>(b){}
  wrapv(Vector<T> &&b):Vector<T>(move(b)){}
  wrapv(const std::vector<T> &b):Vector<T>(b){}
  wrapv(std::vector<T> &&b):Vector<T>(move(b)){}
  T &operator[](Int i){
    return (i<0 || this->size()<=i) ? (defIF=def) : Vector<T>::operator[](i);
  }
  void setdef(const T& x){ def=x; }
};
/*
wrapv v=vll(N,0,1); //vllなどでコンストラクトしてから代入する
v.setdef(INF); //範囲外での値セット
*/



#if 0
#define MODLL (1000000007LL)
#else
#define MODLL (998244353LL)
#endif
using mll = mll_<MODLL>;
//using mll = fraction;

// 1
//0┼2
// 3                   左     上     右    下
const vector<pll> dxys={{0,-1},{-1,0},{0,1},{1,0},};
const string lurd="LURD";



namespace SolvingSpace{

template<class T> using vector = Vector<T>;
using    vll=vector<   ll>; using    vmll=vector<   mll>; using    vdd=vector<   dd>;
using   vvll=vector<  vll>; using   vvmll=vector<  vmll>; using   vvdd=vector<  vdd>;
using  vvvll=vector< vvll>; using  vvvmll=vector< vvmll>; using  vvvdd=vector< vvdd>;
using vvvvll=vector<vvvll>; using vvvvmll=vector<vvvmll>; using vvvvdd=vector<vvvdd>;
using   vpll=vector<  pll>; using    vtll=vector<   tll>; using   vqll=vector<  qll>;
using  vvpll=vector< vpll>; using   vvtll=vector<  vtll>; using  vvqll=vector< vqll>;
using   vll2=vector<  ll2>; using    vll3=vector<   ll3>; using   vll4=vector<  ll4>;
using  vvll2=vector< vll2>; using   vvll3=vector<  vll3>; using  vvll4=vector< vll4>;
using vvvll2=vector<vvll2>; using  vvvll3=vector< vvll3>; using vvvll4=vector<vvll4>;
using vss=vector<string>;
template<class T> vector<T> cinv(ll nm){ return vector<T>(nm,[](ll i){ (void)i; return cin1<T>(); }); }
template<class T> vector<vector<T>> cinvv(ll H,ll W){ return vector<vector<T>>(H,[&](ll i){ (void)i; return cinv<T>(W); }); }

/*■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■■*/


template<class S> struct treapnode{
    void *lch_ = nullptr,*rch_ = nullptr; //子node
    int pri_=0; //優先度
    int cnt_=1; //部分木サイズ
    S data_=S();
    treapnode(){}
    treapnode(int priority,const S &data): pri_(priority),data_(data){}
    void init(int priority,const S &data){ pri_=priority,data_=data; }
    treapnode *lch()const{ return static_cast<treapnode*>(lch_); }
    treapnode *rch()const{ return static_cast<treapnode*>(rch_); }
    S &data(){ return data_; }
    int cnt()const{ return cnt_; }
    int pri()const{ return pri_; }
    int cntL()const{ return lch() ? lch()->cnt() : 0; }
    int cntR()const{ return rch() ? rch()->cnt() : 0; }
    void update_cnt(){ cnt_=cntL()+cntR()+1; }
    void pushup(){ update_cnt(); }
    void pushdown(){}
    constexpr static bool needup(){ return false; } //cnt更新以外にpushup()が必要か
    using data_type = S;
};

template<class Node> struct treap{
    using Int = long long;
    using ll = long long;
    using S = typename Node::data_type;
    Node *root = nullptr;

    static inline vector<Node> nodePool; //nodeの実体プール 一度確保したら再確保しないよう注意
    static inline int nodePoolUsed=0; //nodeの実体使用数
    static inline const S dmy=S();

    treap(Node *tree): root(tree){}
    treap(Int mxNd=0,Int seed=-1){ init(mxNd,seed); }
    treap(const vector<S> &ini,Int mxNd=0,Int seed=-1){ init(ini,mxNd,seed); }
    void init(Int mxNd=0,Int seed=-1){
        if (mxNd>0){
            if (nodePool.empty()) nodePool.resize(mxNd); //未確保時のみ確保
        }
        if (seed!=-1) newPri((int)seed);
    }

    void init(const vector<S> &ini,Int mxNd=0,Int seed=-1){
        int n=(int)ini.size();
        init(max(mxNd,(Int)n),seed);
        if (n==0) return;

        vector<Node*> v;  v.reserve(n);
        int step=0x7fffffff/(n+1);
        for (int i=1; i<=n; ++i) v.push_back(newNode(S(),0x7fffffff-i*step));

        vector<pair<int,int>> lr;  lr.reserve(n);
        lr.emplace_back(0,n-1);
        for (int i=0; i<n; ++i){
            auto [l,r]=lr[i];
            int m=(l+r)>>1;
            v[i]->data()=ini[m];
            if (l<m){
                lr.emplace_back(l,m-1);
                v[i]->lch_=v[lr.size()-1];
            }
            if (m<r){
                lr.emplace_back(m+1,r);
                v[i]->rch_=v[lr.size()-1];
            }
        }
        root=v[0];
        pushupAll(root);
    }

    bool empty()const{ return !root; }
    Int size()const{ return root ? (Int)root->cnt() : 0; }

    S operator[](Int i)const{
        assert(0<=i && i<size());
        Node *v=root;
        while (v->pushdown(),v->cntL()!=i){
            if (v->cntL()<i) i-=v->cntL()+1,v=v->rch();
            else v=v->lch();
        }
        return v->data();
    }

    template<class E,class G> void apply(ll i,const E &y,G g){
        assert(0<=i && i<size());
        static vector<Node*> bf;
        //iまで降りる
        Node *v=root;
        while (true){
            v->pushdown();
            if (Node::needup()) bf.push_back(v);
            if (v->cntL()==i) break;
            if (v->cntL()<i) i-=v->cntL()+1,v=v->rch();
            else v=v->lch();
        }
        //適用
        v->data()=g(y,v->data());
        //祖先列を下から順にpushup
        if (Node::needup()) while (!bf.empty()) bf.back()->pushup(),bf.pop_back();
    }
    void set(ll i,const S &data){
        apply(i,data,[](const S &y,const S &x){ (void)x; return y; });
    }

    bool contains(const S &data){
        return Contains(root,data,
            [&](Node *v,int cntP){ (void)cntP; return data<v->data(); });
    }

    void insert(Int idx,const S &data){
        insert(data,
            [&](Node *v,int cntP){ (void)cntP; return idx<=cntP+v->cntL(); });
    }
    void insert(const S &data){
        insert(data,
            [&](Node *v,int cntP){ (void)cntP; return data<v->data(); });
    }
    void insertq(const S &data){
        insertq(data,
            [&](Node *v,int cntP){ (void)cntP; return data<v->data(); });
    }
    void push_back(const S &data){ insert(size(),data); }

    pair<const S&,Int> floorandidx(const S &data){
        auto [lv,rv,i]=search(
            [&](Node *v,int cntP){ (void)cntP; return data<v->data(); });
        if (lv) return {lv->data(),i};
        else   return {dmy,       i};
    }
    const S& floor(const S& data){ return floorandidx(data).first; }
    Int   flooridx(const S& data){ return floorandidx(data).second; }

    pair<const S&,Int> ceilandidx(const S &data){
        auto [lv,rv,i]=search(
            [&](Node *v,int cntP){ (void)cntP; return data<=v->data(); });
        if (rv) return {rv->data(),i+1};
        else   return {dmy,       i+1};
    }
    const S& ceil(const S& data){ return ceilandidx(data).first; }
    Int   ceilidx(const S& data){ return ceilandidx(data).second; }

    void erasei(Int idx){
        assert(0<=idx && idx<size());
        auto [ltree,mtree,rtree]=split3(root,(int)idx,(int)idx+1);
        root=merge(ltree,rtree);
    }

    bool erasex(const S &data){
        bool ret=true;
        auto [ltree,remtree]=split(root,0,
            [&](Node *v,int cntP){ (void)cntP; return data<=v->data(); });
        auto [mtree,rtree]=split(remtree,1);
        if (!mtree || mtree->data()!=data){
            ret=false;
            root=merge3(ltree,mtree,rtree);
        }
        else root=merge(ltree,rtree);
        return ret;
    }

    void rotate(Int l,Int r,Int m){
        auto [t0,t1,t2,t3]=split4(root,(int)l,(int)m,(int)r+1);
        root=merge4(t0,t2,t1,t3); //root再代入、pri同点で変わる可能性を考慮
    }

    treap splitfront(ll i){
        Node *l;
        tie(l,root)=split(root,(int)i+1);
        return treap(l);
    }
    treap splitback(ll i){
        Node *r;
        tie(root,r)=split(root,(int)i);
        return treap(r);
    }
    template<class Pr> requires is_class_v<Pr> treap splitfront(Pr pr){
        Node *l;
        tie(l,root)=split(root,0,pr);
        return treap(l);
    }
    template<class Pr> requires is_class_v<Pr> treap splitback(Pr pr){
        Node *r;
        tie(root,r)=split(root,0,pr);
        return treap(r);
    }
    treap splitlower(const S &data){
        Node *l;
        tie(l,root)=split(root,0,
            [&](Node *v,int cntP){ (void)cntP; return data<v->data(); });
        return treap(l);
    }
    treap splitupper(const S &data){
        Node *r;
        tie(root,r)=split(root,0,
            [&](Node *v,int cntP){ (void)cntP; return data<=v->data(); });
        return treap(r);
    }

    void mergefront(treap &tr){
        root=merge(tr.root,root);
        tr.root=nullptr;
    }
    void mergeback(treap &tr){
        root=merge(root,tr.root);
        tr.root=nullptr;
    }

    void dumptree()const{ dumptree(root,0); }
    void dump(){ treap(*this).dumpcore(); }

    /*---- utility ----*/

    Node *newNode(const S &data,int pri=-1){ //新規nodeをpoolから生成 なければnew
        if (pri==-1) pri=newPri();
        if (nodePoolUsed >= (int)nodePool.size()) return new Node(pri,data);
        Node *v = &nodePool[nodePoolUsed++];
        v->init(pri,data);
        return v;
    }

    int newPri(int s=-1){ //線形合同法で0~2^31-1の乱数を発生
        static int x = (s!=-1) ? s :
            (int)chrono::system_clock::now().time_since_epoch().count();
        return x=(1103515245*x+12345)&0x7fffffff;
    }

    void pushupAll(Node *tree){ //treeはnullptr不可
        if (tree->lch()) pushupAll(tree->lch());
        if (tree->rch()) pushupAll(tree->rch());
        tree->pushup();
    }

    Node *merge(Node *a,Node *b){ //aの右にbを結合
        if (!a || !b) return a ? a : b;
        Node *ret;
        if (a->pri() > b->pri()) a->pushdown(),a->rch_=merge(a->rch(),b),ret=a;
        else                     b->pushdown(),b->lch_=merge(a,b->lch()),ret=b;
        ret->pushup();
        return ret;
    }
    Node *merge3(Node *l,Node *m,Node *r){ return merge(l,merge(m,r)); }
    Node *merge4(Node *l,Node *m,Node *n,Node *r){ return merge(l,merge3(m,n,r)); }

    //pr(v,cntP)のfalse/trueで分割 左側がfalse
    template<class Pr> requires is_class_v<Pr>
    pair<Node*,Node*> split(Node *nd,int cntP/*サブ木外左側ノード数*/,Pr pr){
        if (!nd) return {nullptr,nullptr};
        nd->pushdown();
        if (!pr(nd,cntP)){ //現nodeを左へ
            auto [ltree,rtree]=split(nd->rch(),cntP+nd->cntL()+1,pr);
            nd->rch_=ltree;
            nd->pushup();
            return {nd,rtree};
        }
        else{ //現nodeを右へ
            auto [ltree,rtree]=split(nd->lch(),cntP,pr);
            nd->lch_=rtree;
            nd->pushup();
            return {ltree,nd};
        }
    }
    pair<Node*,Node*> split(Node *nd,int idx){ //添字idx未満と以上に分割
        return split(nd,0,
            [&](Node *v,int cntP){ (void)cntP; return idx<=cntP+v->cntL(); });
    }
    tuple<Node*,Node*,Node*> split3(Node *nd,int i,int j){//3分割[0,i),[i,j),[j,)
        auto [lmtree,rtree]=split(nd,j);
        auto [ltree,mtree]=split(lmtree,i);
        return {ltree,mtree,rtree};
    }
    tuple<Node*,Node*,Node*,Node*> split4(Node *nd,int i,int j,int k){//4分割
        auto [tree012,tree3]=split(nd,k);
        auto [tree0,tree1,tree2]=split3(tree012,i,j);
        return {tree0,tree1,tree2,tree3};
    }

    //dataをpr(v,cntP)のfalse/true境界に挿入  uniq=true:重複したら挿入しない
    template<class Pr,bool uniq=false> requires is_class_v<Pr>
    void insert(const S &data,Pr pr){
        static vector<Node*> bf;
        int nPri=newPri();
        //-- 優先度が低くなるまで下る
        //v:pri小のサブ木, pv:vの格納場所(lch等), bf:pri大の祖先列
        Node **pv=&root,*v=root;
        int cntP=0;//サブ木外左側ノード数
        while (v && v->pri()>=nPri){
            v->pushdown();
            if (uniq){//一致するデータなら即終了
                if (v->data()==data){ bf.clear(); return; }
            }
            bf.push_back(v);
            if (!pr(v,cntP)) pv=(Node**)&(v->rch_),cntP+=v->cntL()+1;
            else            pv=(Node**)&(v->lch_);
            v=*pv;
        }
        if (uniq){//同じ値が下にあれば即終了
            if (Contains(v,data,pr)){ bf.clear(); return; }
        }
        //-- 優先度低のサブ木vを分割して左右の子にする
        auto [ltree,rtree]=split(v,cntP,pr);
        *pv=merge3(ltree,newNode(data,nPri),rtree);
        //-- 祖先列を下から順にpushup
        while (!bf.empty()) bf.back()->pushup(),bf.pop_back();
    }

    template<class Pr> void insertq(const S &data,Pr pr){
        insert<Pr,true>(data,pr);
    }

    /*!
    @brief   pr(v,cntP)のfalse/true境界を得る
    @return <false側v, true側v, false側vのindex> vがないときはnullptr
    */
    template<class Pr> requires is_class_v<Pr>
    tuple<Node*,Node*,Int> search(Pr pr){
        Node *lv=nullptr,*rv=nullptr,*v=root;
        int cntP=0; //vのサブ木外左側ノード数
        while (v){
            v->pushdown();
            if (pr(v,cntP)) rv=v,moveL(v,cntP);//現在位置 true 左の子へ
            else           lv=v,moveR(v,cntP);//現在位置false 右の子へ
        }
        return {lv,rv,cntP-1};
    }

    template<class Pr> requires is_class_v<Pr>
    bool Contains(Node *tree,const S &data,Pr pr){//true:treeの下に一致する値有
        Node *v=tree;
        while (v){
            v->pushdown();
            if (v->data()==data) return true;
            v = pr(v,0) ? v->lch() : v->rch();
        }
        return false;
    }

    //moveL:左の子へ移動、moveR:右の子へ移動、cntP:vのサブ木外左側ノード数
    static void moveL(Node *&v,int &cntP){ (void)cntP,v=v->lch(); }
    static void moveR(Node *&v,int &cntP){ cntP+=v->cntL()+1,v=v->rch(); }

    void dumptree(Node *v,ll p)const{
        if (!v)return;
        dumptree(v->lch(),-abs(p)-1);
        cout << string(4*abs(p),' ') << ((p<0) ? "/- " : "`- ") << v->data() << '\n';
        dumptree(v->rch(),abs(p)+1);
    }
#if 1
    void dumpcore(){//vectorにして表示  operator[]は遅延に未対応、後で修正
        vector<S> v;
        for (int i=0; i<size(); ++i){
            v.push_back((*this)[i]);
        }
        if (!v.empty()) dumpstring::dumpNd("",v,args().labels({"i"}));
    }
#endif
};


template<class S,auto op,auto e,class F,auto mapping,auto composition,auto id>
struct lazytreapnode: public treapnode<S>{
    static_assert(is_convertible_v<decltype(op),function<S(S,S)>>,"op must work as S(S,S)");
    static_assert(is_convertible_v<decltype(e),function<S()>>,"e must work as S()");
    static_assert(is_convertible_v<decltype(mapping),function<S(F,S)>>,"mapping must work as F(F,S)");
    static_assert(is_convertible_v<decltype(composition),function<F(F,F)>>,"compostiion must work as F(F,F)");
    static_assert(is_convertible_v<decltype(id),function<F()>>,"id must work as F()");
    using P = treapnode<S>;
    S acc_=e(); //サブ木内総積
    F lazy=id(); //子以下(自分の値含む)に遅延して施す写像 自分のaccは適用済
    bool rev=false; //true:サブ木内反転順
    lazytreapnode(){}
    lazytreapnode(int priority,const S &data)
        : treapnode<S>(priority,data),acc_(data){}
    void init(int priority,const S &data){
        treapnode<S>::init(priority,data);
        acc_=data;
    }
    static S E(){ return e(); }
    static S Op(const S &a,const S &b){ return op(a,b); }
    static S Op3(const S &a,const S &b,const S &c){ return op(op(a,b),c); }
    static S Mapping(const F &f,const S &x){ return mapping(f,x); }
    lazytreapnode *lch()const{ return static_cast<lazytreapnode*>(P::lch_); }
    lazytreapnode *rch()const{ return static_cast<lazytreapnode*>(P::rch_); }
    S acc()const{ return acc_; }
    S accL()const{ return lch() ? lch()->acc() : e(); }
    S accR()const{ return rch() ? rch()->acc() : e(); }
    void fliprev(){ rev = !rev; }
    bool isLazyId(){ return lazy==id(); } //Fに依存した高速な判定に変える選択肢有
    void applyParentLazy(F parentLazy){
        acc_= mapping(parentLazy,acc_);
        lazy=composition(parentLazy,lazy);
    }
    void update_acc(){ acc_=Op3(accL(),P::data(),accR()); }
    void pushup(){ P::update_cnt(),update_acc(); }
    void pushdown(){ //子(左,自分の値,右)に、遅延で適用するもの(rev,lazy)を適用
        if (rev){//反転の伝搬
            rev=false;
            swap(P::lch_,P::rch_);
            if (lch()) lch()->fliprev();
            if (rch()) rch()->fliprev();
        }
        if (!isLazyId()){//lazyの伝搬
            //自分の値にlazy適用
            P::data_=mapping(lazy,P::data_);
            //左右の子のaccとlazyに自分のlazyを適用
            if (lch()) lch()->applyParentLazy(lazy);
            if (rch()) rch()->applyParentLazy(lazy);
            lazy=id();
        }
    }
    constexpr static bool needup(){ return true; } //cnt更新以外にpushup()が必要か
    using mapping_type = F;
};

template<class Node> struct lazytreap: public treap<Node>{
    using Int = long long;
    using P = treap<Node>;
    using S = typename Node::data_type;
    using F = typename Node::mapping_type;
    /*---- I/F ----*/
    lazytreap(Int mxNd=0,Int seed=-1):P(mxNd,seed){}
    lazytreap(const vector<S> &ini,Int mxNd=0,Int seed=-1):P(ini,mxNd,seed){}
    void apply(Int l,Int r,const F &f){
        auto [ltree,mtree,rtree]=P::split3(P::root,(int)l,(int)r+1);
        if (mtree) mtree->applyParentLazy(f);
        P::root=P::merge3(ltree,mtree,rtree); //root再代入、pri同点で変わる可能性を考慮
    }
    void apply(ll i,const F &f){
        assert(0<=i && i<P::size());
        auto mapping=[](const F &y,const S &x){ return Node::Mapping(y,x); };
        P::apply(i,f,mapping);
    }

    S get(Int l,Int r){
        //[l,r]をpredL,predRで指定 cntPはvのサブ木外左側ノード数
        auto predL=[&](Node *v,int cntP){ int i=cntP+v->cntL(); return l<=i; };
        auto predR=[&](Node *v,int cntP){ int i=cntP+v->cntL(); return i<=r; };

        //-- フェーズ1:vが範囲に入る(predL,predR=true)まで下る
        Node *v=P::root;
        int cntP=0;//vサブ木外左側node数
        while (v){//下るループ
            v->pushdown();
            if (!predL(v,cntP)) P::moveR(v,cntP);//現在nodeが左外のとき 右子へ
            else if (!predR(v,cntP)) P::moveL(v,cntP);//現在nodeが右外のとき 左子へ
            else break; //範囲内のとき break
        }
        if (!v) return Node::E();//範囲内のnodeが無いとき
        S prod=v->data();

        {//-- フェーズ2a:左の子の[l,*]を積算
            Node *u=v; int cntPu=cntP;
            P::moveL(u,cntPu);//左子へ移動
            while (u){
                u->pushdown();
                if (predL(u,cntPu)){//範囲内のとき 左子へ移動
                    prod=Node::Op3(u->data(),u->accR(),prod);//累積←現nodeの値*右子の値*現累積
                    P::moveL(u,cntPu);
                }
                else P::moveR(u,cntPu);//左外のとき 右子へ移動
            }
        }
        {//-- フェーズ2b:右の子の[*,r]を積算
            Node *u=v; int cntPu=cntP;
            P::moveR(u,cntPu);//右子へ移動
            while (u){
                u->pushdown();
                if (predR(u,cntPu)){//範囲内のとき 右子へ移動
                    prod=Node::Op3(prod,u->accL(),u->data());//累積←現累積*左子の値*現nodeの値
                    P::moveR(u,cntPu);
                }
                else P::moveL(u,cntPu);//右外のとき 左子へ移動
            }
        }
        return prod;
    }

    void reverse(Int l,Int r){
        auto [ltree,mtree,rtree]=P::split3(P::root,(int)l,(int)r+1);
        if (mtree) mtree->fliprev();
        P::root=P::merge3(ltree,mtree,rtree); //root再代入、pri同点で変わる可能性を考慮
    }

    //-------- 区間max/min専用I/F --------
    Int findNextGE(Int i,S x){
        static const bool isMax = S(2) < Node::Op(S(1),S(3));
        auto ret = searchLAcc((int)i,[&](Node *v,int cntP,S accP){
            S curAcc=Node::Op3(accP,v->accL(),v->data());
            return isMax ? curAcc>=x : curAcc<=x;
        });
        return std::get<2>(ret)+1;
    }

    pair<Int,S> findPeakL(Int l,Int r){
        S x=get(l,r);
        return {findNextGE(l,x),x};
    }

    /*---- utility ----*/

    /*!
    @brierf   pr(v,cntP,accP)のfalse/true境界を得る
    pr(単位元)=trueも可
    @return <false側v, true側v, false側vのindex, [l,false側v]総積>
    vがないときはnullptr
    */
    template<class Pr> requires is_class_v<Pr>
    tuple<Node*,Node*,Int,S> searchLAcc(int l,Pr pr){
        auto [lTree,tree]=P::split(P::root,l); //位置l以降を分離

        Node *lv=nullptr,*rv=nullptr,*v=tree;
        int cntP=l; //vのサブ木外左側ノード数
        S accP=Node::E(); //vののサブ木外左側の総積
        while (v){
            v->pushdown();
            if (pr(v,cntP,accP)){//現在位置 true 左の子へ
                rv=v;
                v=v->lch();
            }
            else{//現在位置false 右の子へ
                lv=v;
                cntP+=v->cntL()+1;
                accP=Node::Op3(accP,v->accL(),v->data());//左累積←現累積*左子の値*現nodeの値
                v=v->rch();
            }
        }

        P::root=P::merge(lTree,tree); //分離を戻す root再代入、pri同点で変わる可能性を考慮
        return {lv,rv,cntP-1,accP};
    }
};


using SS = ll;
using FF = ll;
SS op(SS x,SS y) { return x+y; }
SS e() { return 0ll; }
SS mapping(FF f,SS x) { return x; }
FF composition(FF g,FF f) { return f; }
FF id() { return 0; }


void cin2solve()
{
    auto [N,Q]=cins<ll,ll>();
    auto S=cin1<string>();

    {
        ll mxNd=N+Q*4+10;
        lazytreap<lazytreapnode<SS,op,e,FF,mapping,composition,id>> tr(mxNd);
    }
    map<string,lazytreap<lazytreapnode<SS,op,e,FF,mapping,composition,id>>> mp;

    auto erasefunc=[&](ll i){
        if (i-2<0) return;
        if (N<=i) return;
        string s=S.substr(i-2,3);
        auto &tr=mp[s];
        bool b=tr.erasex(i);
        assert(b);
    };
    auto addfunc=[&](ll i){
        if (i-2<0) return;
        if (N<=i) return;
        string s=S.substr(i-2,3);
        auto &tr=mp[s];
        tr.insert(i);
    };

    rep(i,2,N-1){
        addfunc(i);
    }

    auto Q1=[&](){
        auto [k,x]=cins<ll,char>();
        k--;
        erasefunc(k);
        erasefunc(k+1);
        erasefunc(k+2);
        S[k]=x;
        addfunc(k);
        addfunc(k+1);
        addfunc(k+2);
    };
    auto Q2=[&](){
        auto [l,r,a]=cins<ll,ll,string>();
        l--,r--;
        ll L=l+2, R=r;
        if (!mp.contains(a)){
            cout << 0 << '\n'; return;
        }

        auto &tr=mp[a];

        ll st=tr. ceilidx(L); //x以上最小の位置 ないときtr.size()
        ll en=tr.flooridx(R);
        ll sm=st<=en ? tr.get(st,en) : 0ll;
        ll n= st<=en ? en-st+1 : 0ll;
        ll ans=sm-n-l*n;
        cout << ans << '\n';
    };


    rep(q,0,Q-1){
        auto ki=cin1<ll>();
        if (ki==1) Q1();
        if (ki==2) Q2();
    }


    return;
}


}//SorvingSpace

//////////////////////////////////////////

int main(){
    #if 1
    //SolvingSpace::labo();
    SolvingSpace::cin2solve();
    //SolvingSpace::generand();
    #else
    ll t;  cin >> t;
    rep(i,0,t-1){
        SolvingSpace::cin2solve();
        //SolvingSpace::generand();
    } 
    #endif
    cerr << timeget() <<"ms"<< '\n';
    return 0;
}
0