結果
問題 |
No.3247 Multiplication 8 2
|
ユーザー |
👑 |
提出日時 | 2025-08-17 15:24:58 |
言語 | C (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 387 ms / 4,000 ms |
コード長 | 6,727 bytes |
コンパイル時間 | 591 ms |
コンパイル使用メモリ | 33,708 KB |
実行使用メモリ | 130,284 KB |
最終ジャッジ日時 | 2025-08-17 15:27:50 |
合計ジャッジ時間 | 10,556 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 28 |
コンパイルメッセージ
main.c: In function ‘main’: main.c:149:9: warning: ignoring return value of ‘scanf’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 149 | scanf("%d %d", &N, &K); | ^~~~~~~~~~~~~~~~~~~~~~ main.c:150:34: warning: ignoring return value of ‘scanf’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 150 | for (i = 1; i <= N; i++) scanf("%d", &(A[i])); | ^~~~~~~~~~~~~~~~~~~~
ソースコード
#include <stdio.h> #include <stdlib.h> #define NTT_MAX 22 #define NTT_d_MAX (1 << NTT_MAX) const int Mod = 998244353, bit[24] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608}, bit_inv[24] = {1, 499122177, 748683265, 873463809, 935854081, 967049217, 982646785, 990445569, 994344961, 996294657, 997269505, 997756929, 998000641, 998122497, 998183425, 998213889, 998229121, 998236737, 998240545, 998242449, 998243401, 998243877, 998244115, 998244234}, root[24] = {1, 998244352, 911660635, 372528824, 929031873, 452798380, 922799308, 781712469, 476477967, 166035806, 258648936, 584193783, 63912897, 350007156, 666702199, 968855178, 629671588, 24514907, 996173970, 363395222, 565042129, 733596141, 267099868, 15311432}, root_inv[24] = {1, 998244352, 86583718, 509520358, 337190230, 87557064, 609441965, 135236158, 304459705, 685443576, 381598368, 335559352, 129292727, 358024708, 814576206, 708402881, 283043518, 3707709, 121392023, 704923114, 950391366, 428961804, 382752275, 469870224}; void NTT_inline(int kk, int a[], int x[]) { int h, hh, i, ii, j, jj, k, l, r = bit[kk], d = bit[kk-1], tmpp, cur, prev; int *pi, *pii, *pj, *pjj; static int y[2][NTT_d_MAX]; long long tmp; for (i = 0; i < r; i++) y[0][i] = a[i]; for (k = 1, kk--, cur = 1, prev = 0; kk >= 0; k++, kk--, cur ^= 1, prev ^= 1) { for (h = 0, tmp = 1; h << (kk + 1) < r; h++, tmp = tmp * root[k] % Mod) { for (hh = 0, pi = &(y[cur][h<<kk]), pii = pi + d, pj = &(y[prev][h<<(kk+1)]), pjj = pj + bit[kk]; hh < bit[kk]; hh++, pi++, pii++, pj++, pjj++) { tmpp = tmp * (*pjj) % Mod; *pi = *pj + tmpp; if (*pi >= Mod) *pi -= Mod; *pii = *pj - tmpp; if (*pii < 0) *pii += Mod; } } } for (i = 0; i < r; i++) x[i] = y[prev][i]; } void NTT_reverse_inline(int kk, int a[], int x[]) { int h, hh, i, ii, j, jj, k, l, r = bit[kk], d = bit[kk-1], tmpp, cur, prev; int *pi, *pii, *pj, *pjj; static int y[2][NTT_d_MAX]; long long tmp; for (i = 0; i < r; i++) y[0][i] = a[i]; for (k = 1, kk--, cur = 1, prev = 0; kk >= 0; k++, kk--, cur ^= 1, prev ^= 1) { for (h = 0, tmp = 1; h << (kk + 1) < r; h++, tmp = tmp * root_inv[k] % Mod) { for (hh = 0, pi = &(y[cur][h<<kk]), pii = pi + d, pj = &(y[prev][h<<(kk+1)]), pjj = pj + bit[kk]; hh < bit[kk]; hh++, pi++, pii++, pj++, pjj++) { tmpp = tmp * (*pjj) % Mod; *pi = *pj + tmpp; if (*pi >= Mod) *pi -= Mod; *pii = *pj - tmpp; if (*pii < 0) *pii += Mod; } } } for (i = 0; i < r; i++) x[i] = y[prev][i]; } // Compute c[0-d] = a[0-d] + b[0-d] void FPS_sum(int d, int a[], int b[], int c[]) { int i; for (i = 0; i <= d; i++) { c[i] = a[i] + b[i]; if (c[i] >= Mod) c[i] -= Mod; } } // Compute c[0-d] = a[0-d] - b[0-d] void FPS_diff(int d, int a[], int b[], int c[]) { int i; for (i = 0; i <= d; i++) { c[i] = a[i] - b[i]; if (c[i] < 0) c[i] += Mod; } } #define NTT_THR 70 // Compute c[0-dc] = a[0-da] * b[0-db] (naive) void FPS_prod_naive(int da, int db, int dc, int a[], int b[], int c[]) { int i, j, sa, sb; static int supp_a[NTT_d_MAX], supp_b[NTT_d_MAX]; static long long tmp[NTT_d_MAX]; for (i = 0, sa = 0; i <= da; i++) if (a[i] != 0) supp_a[sa++] = i; for (i = 0, sb = 0; i <= db; i++) if (b[i] != 0) supp_b[sb++] = i; for (i = 0; i <= dc; i++) tmp[i] = 0; for (i = 0; i < sa; i++) for (j = 0; j < sb && supp_a[i] + supp_b[j] <= dc; j++) tmp[supp_a[i] + supp_b[j]] += (long long)a[supp_a[i]] * b[supp_b[j]] % Mod; for (i = 0; i <= dc; i++) c[i] = tmp[i] % Mod; } // Compute c[0-dc] = a[0-da] * b[0-db] (NTT) void FPS_prod_NTT(int da, int db, int dc, int a[], int b[], int c[]) { int i, k; static int aa[NTT_d_MAX], bb[NTT_d_MAX], cc[NTT_d_MAX]; for (k = 0; bit[k] <= da + db; k++); for (i = 0; i <= da; i++) aa[i] = a[i]; for (i = da + 1; i < bit[k]; i++) aa[i] = 0; for (i = 0; i <= db; i++) bb[i] = b[i]; for (i = db + 1; i < bit[k]; i++) bb[i] = 0; static int x[NTT_d_MAX], y[NTT_d_MAX], z[NTT_d_MAX]; NTT_inline(k, aa, x); if (db == da) { for (i = 0; i <= da; i++) if (a[i] != b[i]) break; if (i <= da) NTT_inline(k, bb, y); else for (i = 0; i < bit[k]; i++) y[i] = x[i]; } else NTT_inline(k, bb, y); for (i = 0; i < bit[k]; i++) z[i] = (long long)x[i] * y[i] % Mod; NTT_reverse_inline(k, z, cc); for (i = 0; i <= dc; i++) c[i] = (long long)cc[i] * bit_inv[k] % Mod; } // Compute c[0-dc] = a[0-da] * b[0-db] void FPS_prod(int da, int db, int dc, int a[], int b[], int c[]) { int i, sa, sb; if (da > dc) da = dc; if (db > dc) db = dc; for (i = 0, sa = 0; i <= da && sa <= NTT_THR; i++) if (a[i] != 0) sa++; for (i = 0, sb = 0; i <= db && sb <= NTT_THR; i++) if (b[i] != 0) sb++; if (sa <= NTT_THR || sb <= NTT_THR) FPS_prod_naive(da, db, dc, a, b, c); else FPS_prod_NTT(da, db, dc, a, b, c); } long long div_mod(long long x, long long y, long long z) { if (x % y == 0) return x / y; else return (div_mod((1 + x / y) * y - x, (z % y), y) * z + x) / y; } long long pow_mod(int n, long long k) { long long N, ans = 1; for (N = n; k > 0; k >>= 1, N = N * N % Mod) if (k & 1) ans = ans * N % Mod; return ans; } int main() { int i, N, K, A[1000001]; scanf("%d %d", &N, &K); for (i = 1; i <= N; i++) scanf("%d", &(A[i])); int j, k, flag[1000001] = {1}, num[1000001] = {0, 1}; for (i = 1, j = 1, k = 1; i <= N; i++) { k *= A[i]; if (k == 1 && j > 1) { flag[i] = j; num[j]++; } else if (k == 8) { flag[i] = ++j; num[j]++; k = 1; } } if (j == 1 || k != 1) { printf("0\n"); return 0; } for (i = 1; i < N; i++) { if (flag[i] == j) { flag[i] = 0; num[j]--; } } int *x[1000000]; long long prod = 1; for (i = 1; i <= j; i++) { prod = prod * num[i] % Mod; x[i] = (int*)malloc(sizeof(int) * (num[i] + 1)); num[i] = 0; } for (i = 0; i <= N; i++) { if (flag[i] == 0) continue; x[flag[i]][++num[flag[i]]] = i; } int jj, a[2097152], b[2097152], c[2097152], d[2], w; long long ans = 0, pow[1000001]; for (i = 1; i <= N; i++) pow[i] = pow_mod(i, K); for (jj = 1; jj < j; jj++) { w = x[jj+1][1] - x[jj][num[jj]]; d[0] = x[jj][num[jj]] - x[jj][1]; d[1] = x[jj+1][num[jj+1]] - x[jj+1][1]; for (i = 0; i <= d[0]; i++) a[i] = 0; for (i = 0; i <= d[1]; i++) b[i] = 0; for (i = 1; i <= num[jj]; i++) a[x[jj][num[jj]] - x[jj][i]] = 1; for (i = 1; i <= num[jj+1]; i++) b[x[jj+1][i] - x[jj+1][1]] = 1; FPS_prod(d[0], d[1], d[0] + d[1], a, b, c); prod = div_mod(prod, (long long)num[jj] * num[jj+1] % Mod, Mod); for (i = 0; i <= d[0] + d[1]; i++) if (c[i] != 0) ans += pow[w+i] * prod % Mod * c[i] % Mod; prod = prod * num[jj] % Mod * num[jj+1] % Mod; } printf("%lld\n", ans % Mod); fflush(stdout); return 0; }