結果
| 問題 |
No.3078 Difference Sum Query
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-08-18 17:44:30 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 110 ms / 2,000 ms |
| コード長 | 4,429 bytes |
| コンパイル時間 | 13,629 ms |
| コンパイル使用メモリ | 399,736 KB |
| 実行使用メモリ | 15,988 KB |
| 最終ジャッジ日時 | 2025-08-18 17:44:51 |
| 合計ジャッジ時間 | 19,474 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 26 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
#[allow(unused_imports)]
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Segment Tree. This data structure is useful for fast folding on intervals of an array
// whose elements are elements of monoid I. Note that constructing this tree requires the identity
// element of I and the operation of I.
// Verified by: yukicoder No. 2220 (https://yukicoder.me/submissions/841554)
struct SegTree<I, BiOp> {
n: usize,
orign: usize,
dat: Vec<I>,
op: BiOp,
e: I,
}
impl<I, BiOp> SegTree<I, BiOp>
where BiOp: Fn(I, I) -> I,
I: Copy {
pub fn new(n_: usize, op: BiOp, e: I) -> Self {
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
SegTree {n: n, orign: n_, dat: vec![e; 2 * n - 1], op: op, e: e}
}
// ary[k] <- v
pub fn update(&mut self, idx: usize, v: I) {
debug_assert!(idx < self.orign);
let mut k = idx + self.n - 1;
self.dat[k] = v;
while k > 0 {
k = (k - 1) / 2;
self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
}
// [a, b) (half-inclusive)
// http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/
#[allow(unused)]
pub fn query(&self, rng: std::ops::Range<usize>) -> I {
let (mut a, mut b) = (rng.start, rng.end);
debug_assert!(a <= b);
debug_assert!(b <= self.orign);
let mut left = self.e;
let mut right = self.e;
a += self.n - 1;
b += self.n - 1;
while a < b {
if (a & 1) == 0 {
left = (self.op)(left, self.dat[a]);
}
if (b & 1) == 0 {
right = (self.op)(self.dat[b - 1], right);
}
a = a / 2;
b = (b - 1) / 2;
}
(self.op)(left, right)
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn solve() {
#[allow(unused)]
let out = std::io::stdout();
#[allow(unused)]
let mut out = BufWriter::new(out.lock());
#[allow(unused)]
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
input! {
n: usize, q: usize,
a: [i64; n],
qs: [(usize1, usize, i64); q],
}
let mut ev = vec![];
for i in 0..n {
ev.push((a[i], i, 0));
}
for i in 0..q {
let (_, _, x) = qs[i];
ev.push((x, i, 1));
}
ev.sort();
let mut st = SegTree::new(n, |x, y| (x.0 + y.0, x.1 + y.1), (0i64, 0i64));
for i in 0..n {
st.update(i, (a[i], -1));
}
let mut ans = vec![0; q];
for (x, i, t) in ev {
if t == 1 {
let (l, r, _) = qs[i];
let (sum, cnt) = st.query(l..r);
ans[i] = sum + cnt * x;
} else {
st.update(i, (-x, 1));
}
}
for a in ans {
puts!("{a}\n");
}
}