結果
| 問題 |
No.3207 Digital Font
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-08-19 11:05:26 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 2,051 ms / 3,000 ms |
| コード長 | 14,659 bytes |
| コンパイル時間 | 12,573 ms |
| コンパイル使用メモリ | 398,748 KB |
| 実行使用メモリ | 39,508 KB |
| 最終ジャッジ日時 | 2025-08-19 11:06:33 |
| 合計ジャッジ時間 | 66,055 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 38 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
#[allow(unused_imports)]
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod> Default for ModInt<M> {
fn default() -> Self { Self::new_internal(0) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
struct Rng {
x: u64,
}
impl Rng {
fn new() -> Self {
use std::hash::{Hasher, BuildHasher};
let hm = std::collections::HashMap::<i32, i32>::new();
let mut hash = hm.hasher().build_hasher();
hash.write_u32(8128);
Rng {
x: hash.finish(),
}
}
fn next(&mut self) -> u32 {
let a = 0xdead_c0de_0013_3331u64;
let b = 2457;
self.x = self.x.wrapping_mul(a).wrapping_add(b);
let x = self.x;
((x ^ x << 10) >> 32) as _
}
}
// Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
// whose elements are elements of monoid T. Note that constructing this tree requires the identity
// element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
// Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Verified by: https://judge.yosupo.jp/submission/68794
// https://atcoder.jp/contests/joisc2021/submissions/27734236
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n],
lazy: vec![R::upe(); n],
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let mut ret = Self::new(a.len());
let n = ret.n;
for i in 0..a.len() {
ret.dat[n + i] = a[i];
}
for i in (1..n).rev() {
ret.update_node(i);
}
ret
}
#[inline]
pub fn set(&mut self, idx: usize, x: R::T) {
debug_assert!(idx < self.n);
self.apply_any(idx, |_t| x);
}
#[inline]
pub fn apply(&mut self, idx: usize, f: R::U) {
debug_assert!(idx < self.n);
self.apply_any(idx, |t| R::update(t, f));
}
pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx] = f(self.dat[idx]);
for i in 1..self.dep + 1 {
self.update_node(idx >> i);
}
}
pub fn get(&mut self, idx: usize) -> R::T {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx]
}
/* [l, r) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, rng: std::ops::Range<usize>) -> R::T {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return R::e(); }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
let mut sml = R::e();
let mut smr = R::e();
while l < r {
if (l & 1) != 0 {
sml = R::biop(sml, self.dat[l]);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
smr = R::biop(self.dat[r], smr);
}
l >>= 1;
r >>= 1;
}
R::biop(sml, smr)
}
/* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */
#[inline]
pub fn update(&mut self, rng: std::ops::Range<usize>, f: R::U) {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return; }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
{
let l2 = l;
let r2 = r;
while l < r {
if (l & 1) != 0 {
self.all_apply(l, f);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
self.all_apply(r, f);
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..self.dep + 1 {
if ((l >> i) << i) != l { self.update_node(l >> i); }
if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }
}
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: R::U) {
self.dat[k] = R::update(self.dat[k], f);
if k < self.n {
self.lazy[k] = R::upop(self.lazy[k], f);
}
}
fn push(&mut self, k: usize) {
let val = self.lazy[k];
self.all_apply(2 * k, val);
self.all_apply(2 * k + 1, val);
self.lazy[k] = R::upe();
}
}
enum AffineRolling3207 {}
type AffineInt = MInt; // Change here to change type
impl ActionRing for AffineRolling3207 {
type T = (AffineInt, AffineInt, AffineInt); // data, bias, cumulative sum of bias^?
type U = (AffineInt, AffineInt); // action, (a, b) |-> x |-> ax + b
fn biop((x, s, t): Self::T, (y, u, v): Self::T) -> Self::T {
(x * u + y, s * u, t * u + v)
}
fn update((x, bias, s): Self::T, (a, b): Self::U) -> Self::T {
(x * a + b * s, bias, s)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
let (a, b) = fst;
let (c, d) = snd;
(a * c, b * c + d)
}
fn e() -> Self::T {
(0.into(), 1.into(), 0.into())
}
fn upe() -> Self::U { // identity for upop
(1.into(), 0.into())
}
}
fn hashes(
h: usize, w: usize,
ijx: &[(usize, usize, i8)],
ldru: &[(usize, usize, usize, usize)],
bases: &[MInt; 2],
letters: &[MInt; 10],
) -> Vec<MInt> {
let q = ldru.len();
let mut st = LazySegTree::<AffineRolling3207>::new(h);
for i in 0..h {
st.set(i, (0.into(), bases[0], 1.into()));
}
let mut ev = vec![vec![]; w + 1];
for &(i, j, x) in ijx {
ev[j].push((2, i, letters[x as usize]));
}
for i in 0..w {
ev[i].push((1, 0, 0.into()));
}
for i in 0..q {
let (_, d, _, u) = ldru[i];
ev[d].push((0, i, -bases[1].pow((u - d) as i64)));
ev[u].push((0, i, MInt::new(1)));
}
for i in 0..w + 1 {
ev[i].sort();
}
let mut hashes = vec![MInt::new(0); q];
for i in 0..w + 1 {
for &(ty, idx, x) in &ev[i] {
if ty == 0 {
let (l, _, r, _) = ldru[idx];
hashes[idx] += x * st.query(l..r).0;
} else if ty == 1 {
st.update(0..h, (bases[1], 0.into()));
} else {
st.apply(idx, (1.into(), x));
}
}
}
hashes
}
// https://yukicoder.me/problems/no/3207 (3.5)
// 上下それぞれの方向から平面走査して rolling hash を計算すればよい。
// 二つの方向で計算する時、rolling hash の bases と文字に対する乱数が同じになるようにすること。
// -> サンプルが合わずに困ったが、d のときのハッシュ値は単に -1 枚するのではなく bases[1]^{u-d} 倍する必要があることに気づいた。
fn main() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}
input! {
h: usize, w: usize,
n: usize,
ijx: [(usize1, usize1, i8); n],
q: usize,
ldru: [(usize1, usize1, usize, usize); q],
}
let mut rng = Rng::new();
let mut bases = [MInt::new(0); 2];
let mut letters = [MInt::new(0); 10];
for i in 0..2 {
bases[i] = MInt::new(rng.next() as i64);
bases[i] = MInt::new(10);
}
for i in 1..10 {
letters[i] = MInt::new(rng.next() as i64);
letters[i] = MInt::new(i as i64);
}
let hashes1 = hashes(h, w, &ijx, &ldru, &bases, &letters);
let ijx = ijx.into_iter().map(|(i, j, x)| {
let y = match x {
6 => 9,
9 => 6,
_ => x,
};
(h - 1 - i, w - 1 - j, y)
}).collect::<Vec<_>>();
let ldru = ldru.into_iter().map(|(l, d, r, u)| {
(h - r, w - u, h - l, w - d)
}).collect::<Vec<_>>();
let hashes2 = hashes(h, w, &ijx, &ldru, &bases, &letters);
eprintln!("hashes1: {:?}", hashes1);
eprintln!("hashes2: {:?}", hashes2);
for i in 0..q {
puts!("{}\n", if hashes1[i] == hashes2[i] { "Yes" } else { "No" });
}
}