結果
問題 |
No.2611 Count 01
|
ユーザー |
|
提出日時 | 2025-08-19 18:54:49 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 559 ms / 6,000 ms |
コード長 | 10,424 bytes |
コンパイル時間 | 12,579 ms |
コンパイル使用メモリ | 397,748 KB |
実行使用メモリ | 76,388 KB |
最終ジャッジ日時 | 2025-08-19 18:55:16 |
合計ジャッジ時間 | 24,832 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; #[allow(unused_imports)] use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); read_value!($next, [$t; len]) }}; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } #[allow(unused)] trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); } impl<T: PartialOrd> Change for T { fn chmax(&mut self, x: T) { if *self < x { *self = x; } } fn chmin(&mut self, x: T) { if *self > x { *self = x; } } } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // Segment Tree. This data structure is useful for fast folding on intervals of an array // whose elements are elements of monoid I. Note that constructing this tree requires the identity // element of I and the operation of I. // Verified by: yukicoder No. 2220 (https://yukicoder.me/submissions/841554) struct SegTree<I, BiOp> { n: usize, orign: usize, dat: Vec<I>, op: BiOp, e: I, } impl<I, BiOp> SegTree<I, BiOp> where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, orign: n_, dat: vec![e; 2 * n - 1], op: op, e: e} } // ary[k] <- v pub fn update(&mut self, idx: usize, v: I) { debug_assert!(idx < self.orign); let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } // [a, b) (half-inclusive) // http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ #[allow(unused)] pub fn query(&self, rng: std::ops::Range<usize>) -> I { let (mut a, mut b) = (rng.start, rng.end); debug_assert!(a <= b); debug_assert!(b <= self.orign); let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } type M2611 = (MInt, (MInt /* sum i+1 in 0-1 pairs */, MInt /* sum j+1 in 0-1 pairs */, MInt /* 0-1 pairs */), (MInt, MInt) /* 0 */, (MInt, MInt) /* 1 */, ); fn monoid_2611( // is: index sum (asum, (api, apj, apc), (a0n, a0is), (a1n, a1is)): M2611, (bsum, (bpi, bpj, bpc), (b0n, b0is), (b1n, b1is)): M2611, ) -> M2611 { ( asum + bsum + a0is * b1is + (a0n + a1n) * bpj + api * (b0n + b1n), (api + bpi + (a0n + a1n) * bpc + a0is * b1n, apj + bpj + apc * (b0n + b1n) + a0n * b1is, apc + bpc + a0n * b1n), (a0n + b0n, a0is + b0is + (a0n + a1n) * b0n), (a1n + b1n, a1is + b1is + (b0n + b1n) * a1n), ) } // https://yukicoder.me/problems/no/2611 (3.5) // セグメント木を使う。g(S) は 0 が左から i 番目、1 が右から j 番目にある時に (i+1)(j+1) を足したもの、および逆からそれをやったときの和である。 // 各要素が (i+1)(j+1) の和と持てば良いので、 i+1 の和と j+1 の和、それに 0 と 1 の個数が必要である。 // -> サンプルが合わない。モノイド積で、左の区間の中での (i+1)(j+1) の和が、 // 右に何か区間を足すとズレることに気付いていなかった。これには 01 の組み合わせにおける i+1 や j+1 の和が必要。 // これらの計算には 01 の組み合わせが何個できているかも必要。 fn main() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} input! { n: usize, q: usize, s: chars, qs: [[usize1]; q], } let mut s = s; let zero: M2611 = ( MInt::new(0), (MInt::new(0), MInt::new(0), MInt::new(0)), (MInt::new(1), MInt::new(1)), (MInt::new(0), MInt::new(0)), ); let one: M2611 = ( MInt::new(0), (MInt::new(0), MInt::new(0), MInt::new(0)), (MInt::new(0), MInt::new(0)), (MInt::new(1), MInt::new(1)), ); let null = ( MInt::new(0), (MInt::new(0), MInt::new(0), MInt::new(0)), (MInt::new(0), MInt::new(0)), (MInt::new(0), MInt::new(0)), ); let mut st = SegTree::new(n, monoid_2611, null); let mut st_rev = SegTree::new(n, monoid_2611, null); for i in 0..n { st.update(i, if s[i] == '0' { zero } else { one }); st_rev.update(n - 1 - i, if s[i] == '0' { zero } else { one }); } for q in qs { if q.len() == 1 { if s[q[0]] == '0' { st.update(q[0], one); st_rev.update(n - 1 - q[0], one); s[q[0]] = '1'; } else { st.update(q[0], zero); st_rev.update(n - 1 - q[0], zero); s[q[0]] = '0'; } } else { let [l, r] = q[..] else { panic!() }; let res = st.query(l..r + 1); let res_rev = st_rev.query(n - 1 - r..n - l); puts!("{}\n", res.0 + res_rev.0); } } }