結果
| 問題 | No.5022 XOR Printer |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-08-21 23:32:54 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,828 ms / 2,000 ms |
| コード長 | 15,534 bytes |
| コンパイル時間 | 422 ms |
| コンパイル使用メモリ | 82,348 KB |
| 実行使用メモリ | 99,308 KB |
| スコア | 5,210,041,657 |
| 最終ジャッジ日時 | 2025-08-21 23:34:31 |
| 合計ジャッジ時間 | 95,841 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
| 純コード判定しない問題か言語 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 50 |
ソースコード
import copy
import random
from time import perf_counter
import argparse
import sys
import math
MAX = 10**8
class TimeKeeper:
def __init__(self):
self.start_time = perf_counter()
def is_time_over(self, LIMIT):
return (perf_counter() - self.start_time) >= LIMIT
def time_now(self):
return (perf_counter() - self.start_time)
###########################################
def main(DEBUG):
tk = TimeKeeper()
def cal_score(A):
N = 10
score = 0
for i in range(N):
for j in range(N):
score += A[i][j]
return score
def cal_score_sim(ANS):
N = 10
nowi = 0
nowj = 0
s = 0
B = [[0]*N for _ in range(N)]
for i in range(N):
for j in range(N):
B[i][j] = A[i][j]
if len(ANS) > 1000:
return -1
for c in ANS:
if c == "L":
nowj -= 1
elif c == "R":
nowj += 1
elif c == "U":
nowi -= 1
elif c == "D":
nowi += 1
elif c == "W":
B[nowi][nowj] ^= s
elif c == "C":
s ^= B[nowi][nowj]
if nowi < 0 or nowi >= N or nowj < 0 or nowj >= N:
print("outofrange", file=sys.stderr)
return -1
score = 0
for i in range(N):
for j in range(N):
score += B[i][j]
return score
# 最小値(1桁目が0のセル)を最後に書き換える
def replay(ANS):
N = 10
nowi = 0
nowj = 0
s = 0
B = [[0]*N for _ in range(N)]
for i in range(N):
for j in range(N):
B[i][j] = A[i][j]
if len(ANS) > 1000:
return -1
for c in ANS:
if c == "L":
nowj -= 1
elif c == "R":
nowj += 1
elif c == "U":
nowi -= 1
elif c == "D":
nowi += 1
elif c == "W":
B[nowi][nowj] ^= s
elif c == "C":
s ^= B[nowi][nowj]
if nowi < 0 or nowi >= N or nowj < 0 or nowj >= N:
return -1
# 最小値のセルを探す
score = 0
minv = 10**18
for i in range(N):
for j in range(N):
score += B[i][j]
if B[i][j] < minv:
minv = B[i][j]
mini, minj = i, j
maxi, maxj = mini, minj
maxv = 0
i0 = min(nowi, mini)
i1 = max(nowi, mini)
j0 = min(nowj, minj)
j1 = max(nowj, minj)
if (i1-i0+1)*(j1-j0+1) >= 8:
# 現在地からminまでの経路での最大値を求める
for ii in range(i0, i1+1):
for jj in range(j0, j1+1):
if B[ii][jj] > maxv:
maxv = B[ii][jj]
maxi = ii
maxj = jj
else:
# minの近傍で大きな値を探す
for di in range(-3, 4):
for dj in range(-3, 4):
ii = mini + di
jj = minj + dj
if ii < 0 or ii >= N or jj < 0 or jj >= N:
continue
if B[ii][jj] > maxv:
maxv = B[ii][jj]
maxi = ii
maxj = jj
remain = 0
dist1 = abs(nowi-maxi) + abs(nowj-maxj)
dist2 = abs(maxi-mini) + abs(maxj-minj)
while dist1 + dist2 + 3 > remain:
if len(ANS) == 0:
break
c = ANS.pop()
remain += 1
if c == "L":
nowj += 1
elif c == "R":
nowj -= 1
elif c == "U":
nowi += 1
elif c == "D":
nowi -= 1
elif c == "W":
B[nowi][nowj] ^= s
elif c == "C":
s ^= B[nowi][nowj]
dist1 = abs(nowi-maxi) + abs(nowj-maxj)
dist2 = abs(maxi-mini) + abs(maxj-minj)
# 目的地へ向かう
if s < 2**19:
res = goto(nowi, nowj, maxi, maxj)
ANS.extend(res)
nowi = maxi
nowj = maxj
# Copy
ANS.append("C")
# 目的地へ向かう
res = goto(nowi, nowj, mini, minj)
ANS.extend(res)
nowi = mini
nowj = minj
# Copy
ANS.append("C")
# Print
ANS.append("W")
# return mini, minj, nowi, nowj, s
# return score
return ANS
def goto(nowi, nowj, toi, toj):
res = []
di = toi - nowi
dj = toj - nowj
if di > 0:
for _ in range(di):
res.append("D")
else:
for _ in range(abs(di)):
res.append("U")
if dj > 0:
for _ in range(dj):
res.append("R")
else:
for _ in range(abs(dj)):
res.append("L")
return res
# --- 距離ユーティリティ(マンハッタン距離) ---
def _md(a, b):
return abs(a[0]-b[0]) + abs(a[1]-b[1])
# --- 最近近傍で初期解(オープンパス) ---
def _nearest_neighbor_path(points, start):
if not points:
return []
rem = points[:]
# start に最も近い点から始めると安定しやすい
cur_idx = min(range(len(rem)), key=lambda i: _md(start, rem[i]))
path = [rem.pop(cur_idx)]
while rem:
cur = path[-1]
nxt_idx = min(range(len(rem)), key=lambda i: _md(cur, rem[i]))
path.append(rem.pop(nxt_idx))
return path
# --- 2-opt(オープンパス版) ---
def _two_opt_path(order, start, max_iter=20000):
n = len(order)
if n < 3:
return order
def edgelen(p, q): # None は辺なし
return 0 if (p is None or q is None) else _md(p, q)
it = 0
improved = True
while improved and it < max_iter:
improved = False
it += 1
# 端の入れ替えは i=0 とか k=n-1 も許す(オープンパスなのでOK)
for i in range(0, n-1):
A = start if i == 0 else order[i-1]
B = order[i]
for k in range(i+1, n):
C = order[k]
D = None if k == n-1 else order[k+1]
# 2-opt で [i..k] を反転する改善量
delta = edgelen(A, C) + edgelen(B, D) - (edgelen(A, B) + edgelen(C, D))
if delta < 0:
order[i:k+1] = reversed(order[i:k+1])
improved = True
# 早めに次の外側ループへ(小改善でも反映)
if improved:
break
return order
def get_order3(w_pos, nowi, nowj, toi, toj):
"""
(nowi, nowj) から w_pos をすべて訪問し、最後に (toi, toj) へ向かうときの
近似最短順を返す(goal は返り値に含めない)。
"""
start = (nowi, nowj)
goal = (toi, toj)
pts = w_pos[:]
if not pts:
return []
# 初期解:開始点からの最近近傍
order = _nearest_neighbor_path(pts, start)
# goal を終端に含めた 2-opt
n = len(order)
if n < 3:
return order
improved = True
while improved:
improved = False
for i in range(n - 1):
A = start if i == 0 else order[i - 1]
B = order[i]
for k in range(i + 1, n):
C = order[k]
D = goal if k == n - 1 else order[k + 1]
delta = _md(A, C) + _md(B, D) - (_md(A, B) + _md(C, D))
if delta < 0:
order[i:k+1] = reversed(order[i:k+1])
improved = True
break
if improved:
break
return order
def get_order2(w_pos, nowi, nowj):
"""
現在位置 (nowi, nowj) から、w_pos の全点を少ない手数で訪問する順番を返す。
1) 最近近傍で初期解
2) 2-opt(オープンパス版)で改善
"""
start = (nowi, nowj)
pts = w_pos[:] # [(i,j), ...]
# 初期解(最近近傍)
path = _nearest_neighbor_path(pts, start)
# 局所改善(2-opt)
path = _two_opt_path(path, start, max_iter=10000)
return path
def get_order(w_pos, nowi, nowj):
# greedy
w = []
while len(w_pos)>0:
w_pos.sort(key=lambda x: -abs(x[0]-nowi)-abs(x[1]-nowj))
(toi, toj) = w_pos.pop()
w.append((toi, toj))
nowi = toi
nowj = toj
return w
def solve(tk, LIMIT):
X = [[0]*N for _ in range(N)]
for i in range(N):
for j in range(N):
X[i][j] = A[i][j]
nowi = 0
nowj = 0
s = 0
actions = []
#* 2進数で考える:上の桁から順番に操作数の限り行う
for k in range(20): # k:keta
if tk.is_time_over(LIMIT):
break
if len(actions) > 1000:
break
bestv = -10**18
minturn = 10**18
nowi0, nowj0 = nowi, nowj
s0 = s
# max_loop = 100
max_loop = 10
for loop in range(max_loop):
X1 = copy.deepcopy(X)
actions1 = []
nowi, nowj = nowi0, nowj0
s = s0
# sを設定する
xnow = (s >> (20-1-k)) & 1 # 現在のスタンプの k桁目のbit
kouho = []
for i in range(N):
for j in range(N):
#* k桁目のbitが現在のスタンプの逆である かつ k桁目より大きい部分が全て1である マスを候補とする
if ((X1[i][j] >> (20-1-k+1)) == ((1 << k) - 1)) and (((X1[i][j] >> (20-1-k)) & 1) == 1-xnow):
ti, tj = i, j
d = abs(nowi-i) + abs(nowj-j)
kouho.append((d, ti, tj, X1[ti][tj]))
if len(kouho)==0:
print(f"not found kouho {k=} -> break", file=sys.stderr)
break
#* 候補の中から現在地からの距離dが近いものを選ぶ
kouho.sort() # 現在地からの距離dが近い順
# kouho.sort(key=lambda x: x[3]) # セルの値順 だめ
rnd = random.randrange(min(5, len(kouho))) # 上位5個からランダムに
d, ti, tj, _ = kouho[rnd]
# 目的地へ向かう
res = goto(nowi, nowj, ti, tj)
actions1.extend(res)
nowi = ti
nowj = tj
# Copyして完成
actions1.append("C")
s ^= X1[nowi][nowj]
# 書き込みする地点列挙
w_pos = []
dv = 0
for i in range(N):
for j in range(N):
# if (X[i][j] >> (20-1-k)) & 1 == 0:
# if (X[i][j] >> 20-1-k+1 == (1 << k) - 1) and (X[i][j] >> 20-1-k & 1 == 0):
if X1[i][j] ^ s > X1[i][j]: # 今より大きくなるなら採用
w_pos.append((i, j))
dv += (X1[i][j] ^ s) - X1[i][j]
if len(w_pos) == 0:
print(f"not found w_pos {k=} -> break", file=sys.stderr)
break
# 使用せずに残す地点を一つ決める
w_pos.sort(key=lambda x: -X1[x[0]][x[1]])
rnd = random.randrange(min(3, len(w_pos))) # 上位3個からランダムに
(mxi, mxj) = w_pos[rnd]
w_pos.remove((mxi, mxj))
# 巡回する順番決め
w_pos_ordered = get_order3(w_pos, nowi, nowj, mxi, mxj) # 除外した地点がゴールとなるような最短経路
# 巡回
for (toi, toj) in w_pos_ordered:
res = goto(nowi, nowj, toi, toj)
actions1.extend(res)
nowi = toi
nowj = toj
# Print
actions1.append("W")
X1[nowi][nowj] ^= s
# 最後の一つはsに書き込む
toi, toj = mxi, mxj
res = goto(nowi, nowj, toi, toj)
actions1.extend(res)
nowi = toi
nowj = toj
# Copy
actions1.append("C")
s ^= X1[nowi][nowj]
# 暫定スコア
v = 0
for i in range(N):
for j in range(N):
v += X1[i][j]
dturn = len(actions1)
value = dv / 2**(20-k-1) * 5 - dturn # 評価値
if value > bestv:
# if turn < minturn: # ターン数が最も少ないものを採用
# if v > bestv: # 暫定スコアが最も高いものを採用
# print(f"best: {v=} {turn=} loop: {loop}", file=sys.stderr)
bestv = value
# bestv = v
# minturn = turn
best_actions = actions1[:]
best_X = copy.deepcopy(X1)
best_s = s
best_nowi, best_nowj = nowi, nowj
X = copy.deepcopy(best_X)
actions.extend(best_actions)
s = best_s
nowi, nowj = best_nowi, best_nowj
return actions
if DEBUG == True:
LIMIT = 1.0
else:
LIMIT = 1.7
N, T = map(int, input().split())
# N=10, T=1000
A = [list(map(int, input().split())) for _ in range(N)]
best_sc = 0
LOOP = 0
while True:
LOOP += 1
if tk.is_time_over(LIMIT):
break
ANS = solve(tk, LIMIT)
sc0 = cal_score_sim(ANS[:T])
# 最小値のマスを修正
# T=1000時点での最小値(i,j)および(nowi,nowj)、s値を再計算
ANS = replay(ANS[:T])
# print(f"T: {len(ANS)}", file=sys.stderr)
# ANS = ANS[:T]
sc1 = cal_score_sim(ANS)
if sc1 > best_sc:
print(f" BEST {LOOP=} {sc1=}", file=sys.stderr)
best_sc = sc1
best_ans = ANS
# print(f"SC: {sc1} <- {sc0}", file=sys.stderr)
# print(*ANS, sep='\n')
print(f"SC: {best_sc}", file=sys.stderr)
print(*best_ans, sep='\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Debug mode')
parser.add_argument('--debug', action='store_true', help='Enable debug mode')
args = parser.parse_args()
main(args.debug)