結果
| 問題 |
No.3241 Make Multiplication of 8
|
| コンテスト | |
| ユーザー |
yamada
|
| 提出日時 | 2025-08-22 21:11:15 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 605 ms / 2,000 ms |
| コード長 | 28,140 bytes |
| コンパイル時間 | 4,223 ms |
| コンパイル使用メモリ | 354,388 KB |
| 実行使用メモリ | 7,716 KB |
| 最終ジャッジ日時 | 2025-08-22 21:11:26 |
| 合計ジャッジ時間 | 10,165 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 23 |
ソースコード
// Begin include: "../../template/template.hpp"
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
// Begin include: "util.hpp"
namespace yamada {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
using lld = long double;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
template <typename T>
using VVV = vector<vector<vector<T>>>;
template <typename T>
using VVVV = vector<vector<vector<vector<T>>>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
using vvvl = vector<vector<vector<long long>>>;
using vvvvl = vector<vector<vector<vector<long long>>>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxpq = priority_queue<T, vector<T>, less<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
using vvp = VV<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), T(0));
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
template <typename T, typename U>
vector<U> Digit(T a, const U &x) {
vector<U> ret;
while (a > 0) {
ret.emplace_back(a % x);
a /= x;
}
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
if(v.empty()) return {};
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
template <typename T, typename F>
T bisect(T ok, T bad, F pred) {
if (ok == bad) return ok;
if (!pred(ok)) return ok;
while (bad - ok > 1) { T mid = ok + (bad - ok) / 2; (pred(mid) ? ok : bad) = mid; }
return bad;
}
template <typename T, typename F>
T bisect_double(T ok, T bad, F pred, int iter = 100) {
if (ok == bad) return ok;
if (!pred(ok)) return ok;
for (int i = 0; i < iter; i++){
T mid = ok + (bad - ok) / 2; (pred(mid) ? ok : bad) = mid;
}
return bad;
}
template <typename T>
bool inLR(T L, T x, T R){ return (L <= x && x < R); }
bool YESNO(bool b) { cout << (b ? "YES\n" : "NO\n"); return b; }
bool YesNo(bool b) { cout << (b ? "Yes\n" : "No\n"); return b; }
template <typename mint>
void mout(mint a, int M = 100) {
if (a == 0) { cout << 0 << "\n"; return; }
for (int i = 0; i <= M; i++) for (int j = 1; j <= M; j++) {
mint val = (mint)i / j;
if (val == a) {
if (j == 1) cout << i << "\n";
else cout << i << "/" << j << "\n";
return;
}
else if (val == -a) {
if (j == 1) cout << -i << "\n";
else cout << -i << "/" << j << "\n";
return;
}
}
cout << "NF\n";
}
template <typename mint>
void mout(std::vector<mint> A, int M = 100) {
int N = A.size();
for (int pos = 0; pos < N; pos++) {
if (A[pos] == 0) { cout << 0 << (pos == N - 1 ? "\n" : " "); continue; }
bool fn = false;
for (int i = 0; i <= M; i++) {
for (int j = 1; j <= M; j++) {
mint val = (mint)i / j;
if (val == A[pos]) {
if (j == 1) cout << i << (pos == N - 1 ? "\n" : " ");
else cout << i << "/" << j << (pos == N - 1 ? "\n" : " ");
fn = true;
break;
}
else if (val == -A[pos]) {
if (j == 1) cout << -i << (pos == N - 1 ? "\n" : " ");
else cout << -i << "/" << j << (pos == N - 1 ? "\n" : " ");
fn = true;
break;
}
}
if (fn) break;
}
if (!fn) cout << "NF" << (pos == N - 1 ? "\n" : " ");
}
}
} // namespace yamada
// End include: "util.hpp"
// bit operation
// Begin include: "bitop.hpp"
namespace yamada {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace yamada
// End include: "bitop.hpp"
// inout
// Begin include: "inout.hpp"
namespace yamada {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupYamada {
IoSetupYamada() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupyamada;
} // namespace yamada
// End include: "inout.hpp"
// macro
// Begin include: "macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define each3(x, y, z, v) for (auto&& [x, y, z] : v)
#define all(v) (v).begin(), (v).end()
#define rep1(a) for (long long _ = 0; _ < (long long)(a); ++_)
#define rep2(i, a) for (long long i = 0; i < (long long)(a); ++i)
#define rep3(i, a, b) for (long long i = a; i < (long long)(b); ++i)
#define rep4(i, a, b, c) for (long long i = a; i < (long long)(b); i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rep1r(a) for (long long i = (long long)(a)-1; i >= 0LL; --i)
#define rep2r(i, a) for (long long i = (long long)(a)-1; i >= 0LL; --i)
#define rep3r(i, a, b) for (long long i = (long long)(b)-1; i >= (long long)(a); --i)
#define overload3(a, b, c, d, ...) d
#define repr(...) overload3(__VA_ARGS__, rep3r, rep2r, rep1r)(__VA_ARGS__)
#define eb emplace_back
#define mkp make_pair
#define mkt make_tuple
#define fi first
#define se second
#define vv(type, name, h, ...) \
vector<vector<type> > name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
yamada::out(__VA_ARGS__);\
return; \
} while (0)
// End include: "macro.hpp"
namespace yamada {
void solve();
}
int main() { yamada::solve(); }
// End include: "../../template/template.hpp"
// Begin include: "../../prime/fast-factorize.hpp"
#include <cstdint>
#include <numeric>
#include <vector>
using namespace std;
// Begin include: "../internal/internal-math.hpp"
// Begin include: "internal-type-traits.hpp"
#include <type_traits>
using namespace std;
namespace internal {
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
#define ENABLE_HAS_TYPE(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<typename T::var>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
#define ENABLE_HAS_VAR(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
} // namespace internal
// End include: "internal-type-traits.hpp"
namespace internal {
#include <cassert>
#include <utility>
#include <vector>
using namespace std;
// a mod p
template <typename T>
T safe_mod(T a, T p) {
a %= p;
if constexpr (is_broadly_signed_v<T>) {
if (a < 0) a += p;
}
return a;
}
// 返り値:pair(g, x)
// s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
template <typename T>
pair<T, T> inv_gcd(T a, T p) {
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
if (a == 0) return {p, 0};
T b = p, x = 1, y = 0;
while (a != 0) {
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
if (y < 0) y += p / b;
return {b, y};
}
// 返り値 : a^{-1} mod p
// gcd(a, p) != 1 が必要
template <typename T>
T inv(T a, T p) {
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
T b = p, x = 1, y = 0;
while (a != 0) {
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
assert(b == 1);
return y < 0 ? y + p : y;
}
// T : 底の型
// U : T*T がオーバーフローしない かつ 指数の型
template <typename T, typename U>
T modpow(T a, U n, T p) {
a = safe_mod(a, p);
T ret = 1 % p;
while (n != 0) {
if (n % 2 == 1) ret = U(ret) * a % p;
a = U(a) * a % p;
n /= 2;
}
return ret;
}
// 返り値 : pair(rem, mod)
// 解なしのときは {0, 0} を返す
template <typename T>
pair<T, T> crt(const vector<T>& r, const vector<T>& m) {
static_assert(is_broadly_signed_v<T>);
assert(r.size() == m.size());
int n = int(r.size());
T r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
assert(1 <= m[i]);
T r1 = safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1) swap(r0, r1), swap(m0, m1);
if (m0 % m1 == 0) {
if (r0 % m1 != r1) return {0, 0};
continue;
}
auto [g, im] = inv_gcd(m0, m1);
T u1 = m1 / g;
if ((r1 - r0) % g) return {0, 0};
T x = (r1 - r0) / g % u1 * im % u1;
r0 += x * m0;
m0 *= u1;
if (r0 < 0) r0 += m0;
}
return {r0, m0};
}
} // namespace internal
// End include: "../internal/internal-math.hpp"
// Begin include: "../misc/rng.hpp"
// Begin include: "../internal/internal-seed.hpp"
#include <chrono>
using namespace std;
namespace internal {
unsigned long long non_deterministic_seed() {
unsigned long long m =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= 9845834732710364265uLL;
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }
// 64 bit の seed 値を生成 (手元では seed 固定)
// 連続で呼び出すと同じ値が何度も返ってくるので注意
// #define RANDOMIZED_SEED するとシードがランダムになる
unsigned long long seed() {
#if defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
return deterministic_seed();
#else
return non_deterministic_seed();
#endif
}
} // namespace internal
// End include: "../internal/internal-seed.hpp"
namespace my_rand {
using i64 = long long;
using u64 = unsigned long long;
// [0, 2^64 - 1)
u64 rng() {
static u64 _x = internal::seed();
return _x ^= _x << 7, _x ^= _x >> 9;
}
// [l, r]
i64 rng(i64 l, i64 r) {
assert(l <= r);
return l + rng() % u64(r - l + 1);
}
// [l, r)
i64 randint(i64 l, i64 r) {
assert(l < r);
return l + rng() % u64(r - l);
}
// choose n numbers from [l, r) without overlapping
vector<i64> randset(i64 l, i64 r, i64 n) {
assert(l <= r && n <= r - l);
unordered_set<i64> s;
for (i64 i = n; i; --i) {
i64 m = randint(l, r + 1 - i);
if (s.find(m) != s.end()) m = r - i;
s.insert(m);
}
vector<i64> ret;
for (auto& x : s) ret.push_back(x);
sort(begin(ret), end(ret));
return ret;
}
// [0.0, 1.0)
double rnd() { return rng() * 5.42101086242752217004e-20; }
// [l, r)
double rnd(double l, double r) {
assert(l < r);
return l + rnd() * (r - l);
}
template <typename T>
void randshf(vector<T>& v) {
int n = v.size();
for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
}
} // namespace my_rand
using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
// End include: "../misc/rng.hpp"
// Begin include: "../modint/arbitrary-montgomery-modint.hpp"
#include <iostream>
using namespace std;
template <typename Int, typename UInt, typename Long, typename ULong, int id>
struct ArbitraryLazyMontgomeryModIntBase {
using mint = ArbitraryLazyMontgomeryModIntBase;
inline static UInt mod;
inline static UInt r;
inline static UInt n2;
static constexpr int bit_length = sizeof(UInt) * 8;
static UInt get_r() {
UInt ret = mod;
while (mod * ret != 1) ret *= UInt(2) - mod * ret;
return ret;
}
static void set_mod(UInt m) {
assert(m < (UInt(1u) << (bit_length - 2)));
assert((m & 1) == 1);
mod = m, n2 = -ULong(m) % m, r = get_r();
}
UInt a;
ArbitraryLazyMontgomeryModIntBase() : a(0) {}
ArbitraryLazyMontgomeryModIntBase(const Long &b)
: a(reduce(ULong(b % mod + mod) * n2)){};
static UInt reduce(const ULong &b) {
return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length;
}
mint &operator+=(const mint &b) {
if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint &operator-=(const mint &b) {
if (Int(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint &operator*=(const mint &b) {
a = reduce(ULong(a) * b.a);
return *this;
}
mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint &b) const { return mint(*this) += b; }
mint operator-(const mint &b) const { return mint(*this) -= b; }
mint operator*(const mint &b) const { return mint(*this) *= b; }
mint operator/(const mint &b) const { return mint(*this) /= b; }
bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint(0) - mint(*this); }
mint operator+() const { return mint(*this); }
mint pow(ULong n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
Long t;
is >> t;
b = ArbitraryLazyMontgomeryModIntBase(t);
return (is);
}
mint inverse() const {
Int x = get(), y = get_mod(), u = 1, v = 0;
while (y > 0) {
Int t = x / y;
swap(x -= t * y, y);
swap(u -= t * v, v);
}
return mint{u};
}
UInt get() const {
UInt ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static UInt get_mod() { return mod; }
};
// id に適当な乱数を割り当てて使う
template <int id>
using ArbitraryLazyMontgomeryModInt =
ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long,
unsigned long long, id>;
template <int id>
using ArbitraryLazyMontgomeryModInt64bit =
ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t,
__uint128_t, id>;
// End include: "../modint/arbitrary-montgomery-modint.hpp"
// Begin include: "miller-rabin.hpp"
#include <vector>
using namespace std;
// Begin include: "../internal/internal-math.hpp"
// End include: "../internal/internal-math.hpp"
// Begin include: "../modint/arbitrary-montgomery-modint.hpp"
// End include: "../modint/arbitrary-montgomery-modint.hpp"
namespace fast_factorize {
template <typename T, typename U>
bool miller_rabin(const T& n, vector<T> ws) {
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
T d = n - 1;
while (d % 2 == 0) d /= 2;
U e = 1, rev = n - 1;
for (T w : ws) {
if (w % n == 0) continue;
T t = d;
U y = internal::modpow<T, U>(w, t, n);
while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2;
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool miller_rabin_u64(unsigned long long n) {
return miller_rabin<unsigned long long, __uint128_t>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
template <typename mint>
bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) {
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
if (mint::get_mod() != n) mint::set_mod(n);
unsigned long long d = n - 1;
while (~d & 1) d >>= 1;
mint e = 1, rev = n - 1;
for (unsigned long long w : ws) {
if (w % n == 0) continue;
unsigned long long t = d;
mint y = mint(w).pow(t);
while (t != n - 1 && y != e && y != rev) y *= y, t *= 2;
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(unsigned long long n) {
using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
if (n < (1uLL << 30)) {
return miller_rabin<mint32>(n, {2, 7, 61});
} else if (n < (1uLL << 62)) {
return miller_rabin<mint64>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
} else {
return miller_rabin_u64(n);
}
}
} // namespace fast_factorize
using fast_factorize::is_prime;
/**
* @brief Miller-Rabin primality test
*/
// End include: "miller-rabin.hpp"
namespace fast_factorize {
using u64 = uint64_t;
template <typename mint, typename T>
T pollard_rho(T n) {
if (~n & 1) return 2;
if (is_prime(n)) return n;
if (mint::get_mod() != n) mint::set_mod(n);
mint R, one = 1;
auto f = [&](mint x) { return x * x + R; };
auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
while (1) {
mint x, y, ys, q = one;
R = rnd_(), y = rnd_();
T g = 1;
constexpr int m = 128;
for (int r = 1; g == 1; r <<= 1) {
x = y;
for (int i = 0; i < r; ++i) y = f(y);
for (int k = 0; g == 1 && k < r; k += m) {
ys = y;
for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
g = gcd(q.get(), n);
}
}
if (g == n) do
g = gcd((x - (ys = f(ys))).get(), n);
while (g == 1);
if (g != n) return g;
}
exit(1);
}
using i64 = long long;
vector<i64> inner_factorize(u64 n) {
using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;
if (n <= 1) return {};
u64 p;
if (n <= (1LL << 30)) {
p = pollard_rho<mint32, uint32_t>(n);
} else if (n <= (1LL << 62)) {
p = pollard_rho<mint64, uint64_t>(n);
} else {
exit(1);
}
if (p == n) return {i64(p)};
auto l = inner_factorize(p);
auto r = inner_factorize(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
vector<i64> factorize(u64 n) {
auto ret = inner_factorize(n);
sort(begin(ret), end(ret));
return ret;
}
map<i64, i64> factor_count(u64 n) {
map<i64, i64> mp;
for (auto &x : factorize(n)) mp[x]++;
return mp;
}
vector<i64> divisors(u64 n) {
if (n == 0) return {};
vector<pair<i64, i64>> v;
for (auto &p : factorize(n)) {
if (v.empty() || v.back().first != p) {
v.emplace_back(p, 1);
} else {
v.back().second++;
}
}
vector<i64> ret;
auto f = [&](auto rc, int i, i64 x) -> void {
if (i == (int)v.size()) {
ret.push_back(x);
return;
}
rc(rc, i + 1, x);
for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first);
};
f(f, 0, 1);
sort(begin(ret), end(ret));
return ret;
}
} // namespace fast_factorize
using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
/**
* @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
* @docs docs/prime/fast-factorize.md
*/
// End include: "../../prime/fast-factorize.hpp"
void yamada::solve()
{
inl(N);
ll cnt=0,dnt=0,ent=0;
rep(i,N){
inl(a,b);
auto pc= factor_count(a);
each2(p,c,pc)if(p==2){
if(c>=3)ent+=b;
else if(c==2)dnt+=b;
else cnt+=b;
}
}
ll ans=ent;
if(cnt>dnt){
ans+=dnt;
cnt-=dnt;
dnt=0;
ans+=cnt/3;
}
else{
ans+=cnt;
dnt-=cnt;
cnt=0;
ans+=dnt/2;
}
out(ans);
}
yamada