結果

問題 No.3246 80% Accuracy Calculator
ユーザー hitonanode
提出日時 2025-08-22 21:57:58
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 9,917 bytes
コンパイル時間 2,533 ms
コンパイル使用メモリ 221,736 KB
実行使用メモリ 42,128 KB
最終ジャッジ日時 2025-08-22 21:58:08
合計ジャッジ時間 9,034 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other TLE * 1 -- * 42
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

#include <chrono>
#include <random>

struct rand_int_ {
    using lint = long long;
    std::mt19937 mt;
    rand_int_() : mt(42) {}
    // rand_int_() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}
    lint operator()(lint x) { return this->operator()(0, x); } // [0, x)
    lint operator()(lint l, lint r) {
        std::uniform_int_distribution<lint> d(l, r - 1);
        return d(mt);
    }
} rnd;


struct Solver {
    int x, y;
    Solver(int X, int Y) : x(X), y(Y) {}

    int Get(int i) {
        assert(0 <= i and i < 3);
        cout << "? " << (char)('A' + i) << endl;
        int res;
        cin >> res;
        return res;
    }

    void Sum(int in1, int in2, int out) {
        assert(0 <= in1 and in1 < 3);
        assert(0 <= in2 and in2 < 3);
        assert(0 <= out and out < 3);

        cout << "+ " << (char)('A' + in1) << ' ' << (char)('A' + in2) << ' ' << (char)('A' + out)
             << endl;
        int res;
        cin >> res;
    }

    void Fin(int var) {
        assert(0 <= var and var < 3);
        cout << "! " << (char)('A' + var) << endl;
    }
};

struct Judge {
    // int x, y;
    array<int, 3> state;
    int nq = 0;
    Judge(int X, int Y) {
        state = {X, Y, 0};
    }

    int Get(int i) {
        assert(0 <= i and i < 3);
        // cout << "? " << (char)('A' + i) << endl;
        // int res;
        // cin >> res;
        // return res;
        ++nq;
        if (rnd(0, 5) == 0) {
            return 8888888;
        } else {
            return state.at(i);
        }
    }

    void Sum(int in1, int in2, int out) {
        assert(0 <= in1 and in1 < 3);
        assert(0 <= in2 and in2 < 3);
        assert(0 <= out and out < 3);

        if (rnd(0, 5) == 0) {
            state.at(out) = 8888888;
        } else {
            state.at(out) = state.at(in1) + state.at(in2);
        }
    }

    void Fin(int var) {
        assert(0 <= var and var < 3);
        // cout << "! " << (char)('A' + var) << endl;
    }
};

int main() {
    int X, Y;
    cin >> X >> Y;

    // Judge solver{X, Y};
    Solver solver{X, Y};

    vector<int> exp_vals{X, Y, 0};

    auto try_add = [&](int from1, int from2, int to) {
        dbg(make_tuple(exp_vals, from1, from2, to));
        assert(from1 != to);
        assert(from2 != to);
        exp_vals.at(to) = exp_vals.at(from1) + exp_vals.at(from2);

        while (true) {
            solver.Sum(from1, from2, to);
            int suc = 0, fail = 0;
            REP(_, 5) {
                int res = solver.Get(to);
                (res == exp_vals.at(to) ? suc : fail)++;
            }
            if (suc >= 4) break;
        }
    };

    int truepos = 2;
    int now = 0;

    auto nibai = [&]() {
        if (now == 0) return;
        const int nxt_truepos = truepos == 1 ? 2 : 1;
        assert(truepos != nxt_truepos);
        try_add(truepos, truepos, nxt_truepos);
        now *= 2;
        truepos = nxt_truepos;
    };

    auto addx = [&]() {
        const int nxt_truepos = truepos == 1 ? 2 : 1;
        assert(truepos != nxt_truepos);
        try_add(truepos, 0, nxt_truepos);
        now += X;
        truepos = nxt_truepos;
    };

    IREP(d, 10) {
        nibai();
        if (Y & (1 << d)) addx();
    }

    solver.Fin(truepos);
    // dbg(solver.state);
    // dbg(solver.nq);
}
0