結果

問題 No.3243 Multiplication 8 1
ユーザー ruthen71
提出日時 2025-08-22 22:17:12
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 490 ms / 2,000 ms
コード長 20,250 bytes
コンパイル時間 2,841 ms
コンパイル使用メモリ 231,372 KB
実行使用メモリ 7,716 KB
最終ジャッジ日時 2025-08-22 22:17:40
合計ジャッジ時間 4,372 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 4
権限があれば一括ダウンロードができます

ソースコード

diff #

// #include "rcpl/my_template.hpp"
// #include "rcpl/data_structure/static_matrix.hpp"
// #include "rcpl/math/static_modint.hpp"
// using namespace std;
// using mint = mint998;
// 
// void solve() {
//     // TODO: Implement
//     I64(N);
//     using Mat = StaticMatrix<mint, 14, 14>;
//     Mat A;
//     map<pair<int, int>, int> mp;
//     vector<int> states = {1, -1, 2, -2, 4, -4, -8};
//     vector<int> nx = {1, -1, 2, -2};
//     int cnt = 0;
//     FORE(st, states) {
//         REP(i, 2) { mp[{st, i}] = cnt++; }
//     }
//     FORE(p, id, mp) {
//         auto [st, i] = p;
//         FORE(e, nx) {
//             if (abs(st * e) > 8) continue;
//             int nst = st * e;
//             int ni = i;
//             if (nst == 8) {
//                 ni |= 1;
//                 nst = 1;
//             }
//             A[mp[{nst, ni}]][id]++;
//         }
//     }
//     show(A);
//     A.pow(N);
//     show(A);
//     mint ans = A[mp[{1, 1}]][mp[{1, 0}]];
//     print(ans);
//     return;
// }
// 
// int main() {
//     // int T = 1;
//     INT(T);
//     REP(T) solve();
//     return 0;
// }
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#ifdef RUTHEN_LOCAL
#include <rcpl/debug.hpp>
#else
#define show(x) true
#endif

// type definition
using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using f32 = float;
using f64 = double;
using f128 = long double;
template <class T> using pque = std::priority_queue<T>;
template <class T> using pqueg = std::priority_queue<T, std::vector<T>, std::greater<T>>;
// overload
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define overload2(_1, _2, name, ...) name
// for loop
#define REP1(a) for (long long _ = 0; _ < (a); _++)
#define REP2(i, a) for (long long i = 0; i < (a); i++)
#define REP3(i, a, b) for (long long i = (a); i < (b); i++)
#define REP4(i, a, b, c) for (long long i = (a); i < (b); i += (c))
#define REP(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
#define RREP1(a) for (long long _ = (a) - 1; _ >= 0; _--)
#define RREP2(i, a) for (long long i = (a) - 1; i >= 0; i--)
#define RREP3(i, a, b) for (long long i = (b) - 1; i >= (a); i--)
#define RREP(...) overload3(__VA_ARGS__, RREP3, RREP2, RREP1)(__VA_ARGS__)
#define FORE1(x, a) for (auto &&x : a)
#define FORE2(x, y, a) for (auto &&[x, y] : a)
#define FORE3(x, y, z, a) for (auto &&[x, y, z] : a)
#define FORE(...) overload4(__VA_ARGS__, FORE3, FORE2, FORE1)(__VA_ARGS__)
#define FORSUB(t, s) for (long long t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
// function
#define ALL(a) (a).begin(), (a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define SORT(a) std::sort((a).begin(), (a).end())
#define RSORT(a) std::sort((a).rbegin(), (a).rend())
#define REV(a) std::reverse((a).begin(), (a).end())
#define UNIQUE(a)                      \
    std::sort((a).begin(), (a).end()); \
    (a).erase(std::unique((a).begin(), (a).end()), (a).end())
#define LEN(a) (int)((a).size())
#define MIN(a) *std::min_element((a).begin(), (a).end())
#define MAX(a) *std::max_element((a).begin(), (a).end())
#define SUM1(a) std::accumulate((a).begin(), (a).end(), 0LL)
#define SUM2(a, x) std::accumulate((a).begin(), (a).end(), (x))
#define SUM(...) overload2(__VA_ARGS__, SUM2, SUM1)(__VA_ARGS__)
#define LB(a, x) std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x)))
#define UB(a, x) std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x)))
template <class T, class U> inline bool chmin(T &a, const U &b) { return (a > T(b) ? a = b, 1 : 0); }
template <class T, class U> inline bool chmax(T &a, const U &b) { return (a < T(b) ? a = b, 1 : 0); }
template <class T, class S> inline T floor(const T x, const S y) {
    assert(y);
    return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <class T, class S> inline T ceil(const T x, const S y) {
    assert(y);
    return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}
template <class T, class S> std::pair<T, T> inline divmod(const T x, const S y) {
    T q = floor(x, y);
    return {q, x - q * y};
}
// 10 ^ n
constexpr long long TEN(int n) { return (n == 0) ? 1 : 10LL * TEN(n - 1); }
// 1 + 2 + ... + n
#define TRI1(n) ((n) * ((n) + 1LL) / 2)
// l + (l + 1) + ... + r
#define TRI2(l, r) (((l) + (r)) * ((r) - (l) + 1LL) / 2)
#define TRI(...) overload2(__VA_ARGS__, TRI2, TRI1)(__VA_ARGS__)
// bit operation
// bit[i] (= 0 or 1)
#define IBIT(bit, i) (((bit) >> (i)) & 1)
// (0, 1, 2, 3, 4) -> (0, 1, 3, 7, 15)
#define MASK(n) ((1LL << (n)) - 1)
#define POW2(n) (1LL << (n))
// (0, 1, 2, 3, 4) -> (0, 1, 1, 2, 1)
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(i64 x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(i64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(i64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
// binary search (integer)
template <class T, class F> T bin_search(T ok, T ng, F &f) {
    // assert(f(ok) and !f(ng));
    while ((ok > ng ? ok - ng : ng - ok) > 1) {
        T md = (ng + ok) >> 1;
        (f(md) ? ok : ng) = md;
    }
    return ok;
}
// binary search (real number)
template <class T, class F> T bin_search_real(T ok, T ng, F &f, const int iter = 100) {
    // assert(f(ok) and !f(ng));
    for (int _ = 0; _ < iter; _++) {
        T md = (ng + ok) / 2;
        (f(md) ? ok : ng) = md;
    }
    return ok;
}
// floor(sqrt(x))
template <class T> constexpr T sqrt_floor(T x) { return T(sqrtl(x)); }
// check if [l1, r1) and [l2, r2) intersect
template <class T> constexpr bool intersect(const T l1, const T r1, const T l2, const T r2) { return std::max(l1, l2) < std::min(r1, r2); }
// check if [a.first, a.second) and [b.first, b.second) intersect
template <class T> constexpr bool intersect(const std::pair<T, T> &a, const std::pair<T, T> &b) { return intersect(a.first, a.second, b.first, b.second); }
// rotate matrix counterclockwise by pi / 2
template <class T> void rot(std::vector<std::vector<T>> &a) {
    if ((int)(a.size()) == 0) return;
    if ((int)(a[0].size()) == 0) return;
    int n = (int)(a.size()), m = (int)(a[0].size());
    std::vector res(m, std::vector<T>(n));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            res[m - 1 - j][i] = a[i][j];
        }
    }
    a.swap(res);
}
// const value
constexpr int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
// infinity
template <class T> constexpr T INF = 0;
template <> constexpr int INF<int> = 1'000'000'000;                 // 1e9
template <> constexpr i64 INF<i64> = i64(INF<int>) * INF<int> * 2;  // 2e18
template <> constexpr u32 INF<u32> = INF<int>;                      // 1e9
template <> constexpr u64 INF<u64> = INF<i64>;                      // 2e18
template <> constexpr f32 INF<f32> = INF<i64>;                      // 2e18
template <> constexpr f64 INF<f64> = INF<i64>;                      // 2e18
template <> constexpr f128 INF<f128> = INF<i64>;                    // 2e18
// I/O
// input
template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) {
    for (auto &&i : v) is >> i;
    return is;
}
template <class... T> void in(T &...a) { (std::cin >> ... >> a); }
void scan() {}
template <class Head, class... Tail> void scan(Head &head, Tail &...tail) {
    in(head);
    scan(tail...);
}
// input macro
#define INT(...)     \
    int __VA_ARGS__; \
    scan(__VA_ARGS__)
#define I64(...)     \
    i64 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define U32(...)     \
    u32 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define U64(...)     \
    u64 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define F32(...)     \
    f32 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define F64(...)     \
    f64 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define F128(...)     \
    f128 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define STR(...)             \
    std::string __VA_ARGS__; \
    scan(__VA_ARGS__)
#define CHR(...)      \
    char __VA_ARGS__; \
    scan(__VA_ARGS__)
#define VEC(type, name, size)     \
    std::vector<type> name(size); \
    scan(name)
#define VEC2(type, name1, name2, size)          \
    std::vector<type> name1(size), name2(size); \
    for (int i = 0; i < size; i++) scan(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size)                \
    std::vector<type> name1(size), name2(size), name3(size); \
    for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size)                      \
    std::vector<type> name1(size), name2(size), name3(size), name4(size); \
    for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i], name4[i])
#define VV(type, name, h, w)                       \
    std::vector name((h), std::vector<type>((w))); \
    scan(name)
// output
template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
    auto n = v.size();
    for (size_t i = 0; i < n; i++) {
        if (i) os << ' ';
        os << v[i];
    }
    return os;
}
template <class... T> void out(const T &...a) { (std::cout << ... << a); }
void print() { out('\n'); }
template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {
    out(head);
    if (sizeof...(Tail)) out(' ');
    print(tail...);
}
// for interactive problems
void printi() { std::cout << std::endl; }
template <class Head, class... Tail> void printi(Head &&head, Tail &&...tail) {
    out(head);
    if (sizeof...(Tail)) out(' ');
    printi(tail...);
}
// bool output
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void NO(bool t = 1) { YES(!t); }
void No(bool t = 1) { Yes(!t); }
void no(bool t = 1) { yes(!t); }
void POSSIBLE(bool t = 1) { print(t ? "POSSIBLE" : "IMPOSSIBLE"); }
void Possible(bool t = 1) { print(t ? "Possible" : "Impossible"); }
void possible(bool t = 1) { print(t ? "possible" : "impossible"); }
void IMPOSSIBLE(bool t = 1) { POSSIBLE(!t); }
void Impossible(bool t = 1) { Possible(!t); }
void impossible(bool t = 1) { possible(!t); }
void FIRST(bool t = 1) { print(t ? "FIRST" : "SECOND"); }
void First(bool t = 1) { print(t ? "First" : "Second"); }
void first(bool t = 1) { print(t ? "first" : "second"); }
void SECOND(bool t = 1) { FIRST(!t); }
void Second(bool t = 1) { First(!t); }
void second(bool t = 1) { first(!t); }
// I/O speed up
struct SetUpIO {
    SetUpIO() {
        std::ios::sync_with_stdio(false);
        std::cin.tie(0);
        std::cout << std::fixed << std::setprecision(20);
    }
} set_up_io;

template <class T, size_t n, size_t m = n> struct StaticMatrix {
    std::array<std::array<T, m>, n> A;

    // why "A{{}}" ?
    // std::array<int, 5> arr3{1, 2}; -> arr3 = {1, 2, 0, 0, 0}
    StaticMatrix() : A{{}} {}

    StaticMatrix(T val) : A{{}} {
        for (int i = 0; i < (int)n; i++) A[i].fill(val);
    }

    inline size_t size() const { return n; }

    inline int row() const { return (int)n; }

    inline int col() const { return (int)m; }

    inline const std::array<T, m> &operator[](int i) const { return A[i]; }  // read

    inline std::array<T, m> &operator[](int i) { return A[i]; }  // write

    static StaticMatrix E() {
        assert(n == m);
        StaticMatrix ret;
        for (int i = 0; i < (int)n; i++) ret[i][i] = T(1);
        return ret;
    }

    StaticMatrix &operator+=(const StaticMatrix &B) {
        int N = row(), M = col();
        assert(N == B.row() and M == B.col());
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < M; j++) {
                (*this)[i][j] += B[i][j];
            }
        }
        return (*this);
    }

    StaticMatrix &operator-=(const StaticMatrix &B) {
        int N = row(), M = col();
        assert(N == B.row() and M == B.col());
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < M; j++) {
                (*this)[i][j] -= B[i][j];
            }
        }
        return (*this);
    }

    StaticMatrix &operator*=(const StaticMatrix &B) {
        int N = row(), M = B.col(), L = B.row();
        assert(L == col());
        StaticMatrix C;
        for (int i = 0; i < N; i++) {
            for (int k = 0; k < L; k++) {
                for (int j = 0; j < M; j++) {
                    C[i][j] += (*this)[i][k] * B[k][j];
                }
            }
        }
        A.swap(C.A);
        return (*this);
    }

    // A ^= k
    StaticMatrix pow(long long k) {
        assert(row() == col());
        StaticMatrix B = StaticMatrix::E(), X = (*this);
        while (k) {
            if (k & 1) B *= X;
            X *= X;
            k >>= 1;
        }
        A.swap(B.A);
        return (*this);
    }

    StaticMatrix operator+(const StaticMatrix &B) { return ((*this) += B); }

    StaticMatrix operator-(const StaticMatrix &B) { return ((*this) -= B); }

    StaticMatrix operator*(const StaticMatrix &B) { return ((*this) *= B); }

    friend std::ostream &operator<<(std::ostream &os, StaticMatrix &A) {
        int N = A.row(), M = A.col();
        for (int i = 0; i < N; i++) {
            os << '[';
            for (int j = 0; j < M; j++) os << A[i][j] << " \n"[j == M - 1];
        }
        return (os);
    }

    StaticMatrix &operator+=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] += k;
        return (*this);
    }

    StaticMatrix &operator-=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] -= k;
        return (*this);
    }

    StaticMatrix &operator*=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] *= k;
        return (*this);
    }

    StaticMatrix &operator/=(const T &k) {
        int N = row(), M = col();
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++) (*this)[i][j] /= k;
        return (*this);
    }

    StaticMatrix operator+(const T &k) { return ((*this) += k); }

    StaticMatrix operator-(const T &k) { return ((*this) -= k); }

    StaticMatrix operator*(const T &k) { return ((*this) *= k); }

    StaticMatrix operator/(const T &k) { return ((*this) /= k); }
};

// constexpr ... for constexpr bool prime()
template <int m> struct StaticModint {
    using mint = StaticModint;
    unsigned int _v;

    static constexpr int mod() { return m; }
    static constexpr unsigned int umod() { return m; }

    constexpr StaticModint() : _v(0) {}

    template <class T> constexpr StaticModint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }

    constexpr unsigned int val() const { return _v; }

    constexpr mint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    constexpr mint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    constexpr mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    constexpr mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    constexpr mint &operator+=(const mint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr mint &operator-=(const mint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr mint &operator*=(const mint &rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    constexpr mint &operator/=(const mint &rhs) { return (*this *= rhs.inv()); }

    constexpr mint operator+() const { return *this; }
    constexpr mint operator-() const { return mint() - *this; }

    constexpr mint pow(long long n) const {
        assert(n >= 0);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }

    constexpr mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }
    friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }
    friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }
    friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }
    friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }
    friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }
    friend std::ostream &operator<<(std::ostream &os, const mint &v) { return os << v.val(); }

    static constexpr bool prime = []() -> bool {
        if (m == 1) return false;
        if (m == 2 || m == 7 || m == 61) return true;
        if (m % 2 == 0) return false;
        unsigned int d = m - 1;
        while (d % 2 == 0) d /= 2;
        for (unsigned int a : {2, 7, 61}) {
            unsigned int t = d;
            mint y = mint(a).pow(t);
            while (t != m - 1 and y != 1 and y != m - 1) {
                y *= y;
                t <<= 1;
            }
            if (y != m - 1 and t % 2 == 0) {
                return false;
            }
        }
        return true;
    }();
    static constexpr std::pair<int, int> inv_gcd(int a, int b) {
        if (a == 0) return {b, 0};
        int s = b, t = a, m0 = 0, m1 = 1;
        while (t) {
            const int u = s / t;
            s -= t * u;
            m0 -= m1 * u;
            std::swap(s, t);
            std::swap(m0, m1);
        }
        if (m0 < 0) m0 += b / s;
        return {s, m0};
    }
};
using mint107 = StaticModint<1000000007>;
using mint998 = StaticModint<998244353>;
using namespace std;
using mint = mint998;

void solve() {
    // TODO: Implement
    I64(N);
    using Mat = StaticMatrix<mint, 14, 14>;
    Mat A;
    map<pair<int, int>, int> mp;
    vector<int> states = {1, -1, 2, -2, 4, -4, -8};
    vector<int> nx = {1, -1, 2, -2};
    int cnt = 0;
    FORE(st, states) {
        REP(i, 2) { mp[{st, i}] = cnt++; }
    }
    FORE(p, id, mp) {
        auto [st, i] = p;
        FORE(e, nx) {
            if (abs(st * e) > 8) continue;
            int nst = st * e;
            int ni = i;
            if (nst == 8) {
                ni |= 1;
                nst = 1;
            }
            A[mp[{nst, ni}]][id]++;
        }
    }
    show(A);
    A.pow(N);
    show(A);
    mint ans = A[mp[{1, 1}]][mp[{1, 0}]];
    print(ans);
    return;
}

int main() {
    // int T = 1;
    INT(T);
    REP(T) solve();
    return 0;
}
0